Medical Policy
Chromoendoscopy as an Adjunct to Colonoscopy

Table of Contents
• Policy: Commercial
• Coding Information
• Information Pertaining to All Policies
• Policy: Medicare
• Description
• References
• Authorization Information
• Policy History

Policy Number: 904
BCBSA Reference Number: 2.01.84 (For Plan internal use only)
NCD/LCD: N/A

Related Policies
Confocal Laser Endomicroscopy, #618

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Chromoendoscopy is considered INVESTIGATIONAL as an adjunct to diagnostic or surveillance colonoscopy.

Virtual chromoendoscopy is considered INVESTIGATIONAL as an adjunct to diagnostic or surveillance colonoscopy.

Prior Authorization Information
Inpatient
• For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
• For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td></td>
</tr>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td></td>
</tr>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td></td>
</tr>
<tr>
<td>This is not a covered service.</td>
<td></td>
</tr>
</tbody>
</table>
CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes
There is no specific CPT code for this service.

ICD Diagnosis Codes
Investigational for all diagnoses.

DESCRIPTION
Colonoscopy
Colonoscopy, a procedure during which colonic and rectal polyps can be identified and removed, is considered the criterion standard test for colorectal cancer (CC) screening and diagnosis of colorectal disease. However, colonoscopy is an imperfect procedure. A systematic review and meta-analysis by Zhao et al (2019) pooled findings from more than 15,000 tandem (ie, back-to-back) colonoscopies in 43 publications and found a miss rate of 26% for adenomas, 9% for advanced adenomas, and 27% for serrated polyps. Miss rates were higher for proximal advanced adenomas (14%), serrated polyps (27%), flat adenomas (34%), and in patients at high risk for CC (33%).

Adjunctive Procedures
Several adjunct endoscopic techniques, including chromoendoscopy, could enhance the sensitivity of colonoscopy. Chromoendoscopy, also known as chromoscopy and chromocolonoscopy, refers to the application of topical stains or dyes during endoscopy to enhance tissue differentiation or characterization and facilitate identification of mucosal abnormalities. Chromoendoscopy may be particularly useful for detecting flat or depressed lesions. A standard colonoscopy uses white-light to view the colon. In chromoendoscopy, stains are applied, resulting in color highlighting of areas of surface morphology of epithelial tissue. The dyes or stains are applied via a spray catheter that is inserted down the working channel of the endoscope. Chromoendoscopy can be used in the whole colon (pancolonic chromoendoscopy) on an untargeted basis or can be directed to a specific lesion or lesions (targeted chromoendoscopy). Chromoendoscopy differs from endoscopic tattooing in that the former uses transient stains, whereas tattooing involves the use of a long-lasting pigment for future localization of lesions.

Stains and dyes used in chromoendoscopy can be placed in the following categories:

- Absorptive stains are preferentially absorbed by certain types of epithelial cells.
- Contrast stains seep through mucosal crevices and highlight surface topography.
- Reactive stains undergo chemical reactions when in contact with specific cellular constituents, which results in a color change.

Indigo carmine, a contrast stain, is one of the most commonly used stains with colonoscopy to enhance the detection of colorectal neoplasms. Several absorptive stains are also used with colonoscopy. Methylene blue is widely used; it stains the normal absorptive epithelium of the small intestine and colon, and has been used to detect colonic neoplasia and to aid in the detection of intraepithelial neoplasia in patients with chronic ulcerative colitis. In addition, crystal violet (also known as gentian violet) stains cell nuclei and has been applied in the colon to enhance visualization of pit patterns (ie, superficial mucosal detail). Reactive stains are primarily used to identify gastric abnormalities and are not used with colonoscopy.
Potential applications of chromoendoscopy as an adjunct to standard colonoscopy include:

- Diagnosis of colorectal neoplasia in symptomatic patients at increased risk of CC due to a family history of CC, a personal history of adenomas, etc.
- Identification of mucosal abnormalities for targeted biopsy as an alternative to multiple random biopsies in patients with inflammatory bowel disease.
- Screening the general population for CC.

The equipment used in regular chromoendoscopy is widely available. Several review articles and technology assessments have indicated that, although the techniques are simple, the procedure (eg, the concentration of dye and amount of dye sprayed) is variable, and thus classification of mucosal staining patterns for identifying specific conditions is not standardized.

Virtual chromoendoscopy (also called electronic chromoendoscopy) involves imaging enhancements with endoscopy systems that could be an alternative to dye spraying. One system is the Fujinon Intelligent Color Enhancement feature (Fujinon Inc.). This technology uses postprocessing computer algorithms to modify the light reflected from the mucosa from conventional white-light to various other wavelengths.

Summary
Chromoendoscopy refers to the use of dyes or stains during endoscopy to enhance tissue differentiation or characterization. When used with colonoscopy, the intent is to increase the sensitivity of the procedure by facilitating the identification of mucosal abnormalities. There are 2 types of chromoendoscopy: 1 involves actual spraying of dyes or stains through the working channel of an endoscope; the other, known as virtual chromoendoscopy, uses a computer algorithm to simulate different colors of light that result from dye or stain spraying.

Chromoendoscopy
For individuals who have an average risk of colorectal cancer (CC) who receive chromoendoscopy, the evidence includes RCTs and a meta-analysis of these RCTs. Relevant outcomes are overall survival (OS), disease-specific survival (DSS), test validity, and change in disease status. The meta-analysis demonstrated that dye-based chromoendoscopy increased the adenoma detection rate and adenomas per colonoscopy in patients at average or increased risk of CC compared to standard or high-definition white light colonoscopy. However, limitations included unclear indication of colonoscopy in the studies (which included patients with screening and surveillance), and some heterogeneity in mean adenomas per patient. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have an increased risk of CC who receive chromoendoscopy, the evidence includes multiple RCTs and systematic reviews. Relevant outcomes are OS, DSS, test validity, and change in disease status. A Cochrane systematic review of trials comparing chromoendoscopy with standard colonoscopy in high-risk patients (but excluding those with inflammatory bowel disease [IBD]) found significantly higher rates of adenoma detection and rates of 3 or more adenomas with chromoendoscopy than with standard colonoscopy. The evidence for detecting larger polyps, defined as greater than 5 mm or greater than 10 mm, is less robust. While 1 study reported a significantly higher detection rate for polyps greater than 5 mm, no studies reported increased detection of polyps greater than 10 mm. A recent RCT and systematic review involving patients with Lynch syndrome also found equivocal results. Results from the RCT showed similar neoplasia detection rates with chromoendoscopy and conventional white-light colonoscopy, while the systematic review concluded that chromoendoscopy is associated with significantly improved detection of certain lesions; however, the odds of having an adenoma detected were not significantly different between the modalities. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have IBD who receive chromoendoscopy, the evidence includes meta-analyses and a recent RCT. Relevant outcomes are OS, DSS, test validity, and change in disease status. Several meta-analyses found a statistically significant higher yield of chromoendoscopy over standard white-light...
colonoscopy for detecting dysplasia. The evidence supported improved polyp detection rates with chromoendoscopy; however, the studies had limitations such as lack of information regarding the timing of the screening modalities. A recent RCT found increased detection of dysplasia with chromoendoscopy compared to white-light endoscopy, although the benefit was only observed in a subgroup analysis in the second half of the study follow-up period. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Virtual Chromoendoscopy

For individuals who have an average risk of CC who receive virtual chromoendoscopy, the evidence includes several RCTs and systematic reviews. Relevant outcomes are OS, DSS, test validity, and change in disease status. The available RCTs have not found that virtual chromoendoscopy improves the detection of clinically important polyps compared with standard white-light colonoscopy. Moreover, there is a lack of studies assessing the impact of virtual chromoendoscopy on CC incidence and mortality rates compared with standard colonoscopy. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have an increased risk of CC who receive virtual chromoendoscopy, the evidence includes RCTs. Relevant outcomes are OS, DSS, test validity, and change in disease status. The available RCTs have not found that virtual chromoendoscopy improves the detection of clinically important polyps compared with standard white-light colonoscopy. Moreover, there is a lack of studies assessing the impact of virtual chromoendoscopy on CC incidence and mortality rates compared with standard colonoscopy. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have IBD who receive virtual chromoendoscopy, the evidence includes 2 meta-analyses and 2 RCTs. Relevant outcomes are OS, DSS, test validity, and change in disease status. One meta-analysis showed superiority of virtual chromoendoscopy over high-definition white light colonoscopy for dysplasia per biopsy, and ranked virtual chromoendoscopy as the best option for screening among the different modalities in comparison. The second meta-analysis found no difference between dye-based chromoendoscopy and virtual chromoendoscopy for dysplasia detection. One RCT found a significantly greater likelihood that virtual chromoendoscopy would correctly identify the extent of disease inflammation than standard colonoscopy but no significant difference in the likelihood of identifying disease activity. The other RCT found that there was no significant difference in the detection of neoplasia between high definition white light versus high-definition virtual chromoendoscopy in patients with long-standing IBD. There is a lack of studies assessing the impact of virtual chromoendoscopy on CC incidence and mortality rates compared with standard colonoscopy. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2023</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2022</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2021</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2019</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2018</td>
<td>Annual policy review. New references added.</td>
</tr>
<tr>
<td>7/2017</td>
<td>Annual policy review. New references added.</td>
</tr>
<tr>
<td>12/2016</td>
<td>Annual policy review. New references added.</td>
</tr>
<tr>
<td>1/2016</td>
<td>Annual policy review. New references added.</td>
</tr>
<tr>
<td>5/2015</td>
<td>Annual policy review. New references added.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References
26. Park SJ, Kim HS, Yang DH et al. High definition chromoendoscopy with water-jet versus high definition white light endoscopy in the detection of dysplasia in long standing ulcerative colitis: a multicenter prospective randomized controlled study. Gastroenterology 2016;150:S1270

