Medical Policy

Adjunctive Techniques for Screening and Surveillance of Barrett Esophagus and Esophageal Dysplasia

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 841
BCBSA Reference Number: 7.01.167 (For Plan internal use only)
NCD/LCD: N/A

Related Policies
Endoscopic Radiofrequency Ablation or Cryoablation for Barrett Esophagus #218
Oncologic Applications of Photodynamic Therapy, Including Barrett Esophagus #454

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Wide-area transepithelial sampling with three-dimensional computer-assisted analysis (WATS3D) is considered INVESTIGATIONAL for all indications, including but not limited to the screening and surveillance of Barrett esophagus and esophageal dysplasia.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed INPATIENT.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed OUTPATIENT.

<table>
<thead>
<tr>
<th></th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes
There are not any codes for this procedure

Description
Barrett Esophagus
Barrett esophagus (BE) is a condition in which the squamous epithelium that normally lines the esophagus is replaced by specialized columnar-type epithelium known as intestinal metaplasia in response to irritation and injury caused by gastroesophageal reflux disease (GERD). Barrett esophagus occurs in the distal esophagus. It may involve any length of the esophagus, be focal or circumferential, and is visualized on endoscopy with a different color than background squamous mucosa. Confirmation of BE requires a biopsy of the columnar epithelium and microscopic identification of intestinal metaplasia.1 The prevalence of BE in the United States is estimated at 5.6%.2 Risk factors associated with the development of BE include GERD, male gender, central obesity, and age over 50 years. The diagnosis of GERD is associated with a 10% to 15% risk of BE.3 However, a population-based analysis from Sweden observed that 40% of the study cohort with esophageal cancer reported no prior history of GERD symptoms.4

Cancer Risk and Management
Intestinal metaplasia is a precursor to esophageal adenocarcinoma, and patients with BE are at a 40-fold increased risk for developing this disease compared to the general population.1

However, there are few data to guide recommendations about management and surveillance, and many issues are controversial. Guidelines from the American College of Gastroenterology (ACG)3 and a consensus statement from an international group of experts (Benign Barrett's and CAncer Taskforce) on the management of BE are published.5 The ACG recommendations for surveillance are stratified by the presence and grade of dysplasia.

When no dysplasia is detected, ACG has reported the estimated risk of progression to cancer ranges from 0.2% to 0.5% per year and endoscopic surveillance every 3 to 5 years is recommended. For low-grade dysplasia, the estimated risk of progression is 0.7% per year, and endoscopic therapy is preferred; however, endoscopic surveillance every 12 months is considered an acceptable alternative. It is recommended that both options are discussed with the patient.3 Precise estimates of cancer risk are not available for individuals with low-grade dysplasia due to large disparities among studies on its natural history. Interobserver variability in the diagnosis of low-grade dysplasia with standard biopsy may be responsible, with expert pathologists commonly downgrading initial diagnoses made by community pathologists.6

The Benign Barrett's and CAncer Taskforce consensus group did not endorse routine surveillance for people without dysplasia and was unable to agree on surveillance intervals for low-grade dysplasia.5

For high-grade dysplasia, the estimated risk of progression is about 7% per year, and ACG has recommended endoscopic eradication therapy, with the type of procedure dependent on patient age and life expectancy, comorbidities, the extent of dysplasia, local expertise in surgery and endoscopy, and patient preference.3 Approximately 40% of patients with high-grade dysplasia on biopsy are found to have associated carcinoma in the resection specimen.7

For patients who are indefinite for dysplasia, a repeat endoscopy should be performed at 3 to 6 months following optimization of acid suppressive medications. A surveillance interval of 12 months is
recommended if an indefinite for dysplasia reading is confirmed on repeat endoscopy in these individuals.\(^3\). Many patients who are indefinite for dysplasia show regression to nondysplastic BE with subsequent endoscopic evaluation. It is unclear whether some cases of regression are observed due to sampling error.\(^8\).

Summary

The wide area transepithelial sampling with three-dimensional analysis (WATS3D) is performed during endoscopic examination of the esophagus. The computer-assisted brush biopsy procedure is intended as an adjunct to standard four-quadrant forceps biopsy for screening or surveillance of cancerous or precancerous esophageal lesions and Barrett esophagus (BE).

Summary of Evidence

For individuals with a history of BE who receive standard surveillance with adjunctive WATS3D, the evidence includes studies of diagnostic yield, a physician impact study, a decision analytic model, and a retrospective analysis of the manufacturer database. Relevant outcomes are test validity, overall survival, disease-specific survival, change in disease status, and quality of life. Relative diagnostic yields for BE and various categories of dysplasia have ranged from 18.8% to 73% and 42.1% to 428.6%, respectively. These studies are limited by heterogeneity in classification and reporting of test results and selection bias stemming from the enrichment of patients with a prior history of dysplasia. It is also unclear to what extent results obtained from academic centers are generalizable to community-based settings, where adherence to endoscopic biopsy guidelines is poor. In discordant cases where BE or dysplasia were identified only by WATS3D, significant physician management changes included initiation of invasive treatments. Health outcomes stemming from management changes were not reported, and risks associated with overdiagnosis and overtreatment require elucidation. Follow-up data on disease progression in these patients are limited. A retrospective analysis of the manufacturer database found a disease progression rate of 5.79% per patient-year (95% confidence interval [CI], 1.02% to 10.55%) for baseline low-grade dysplasia diagnoses via WATS3D sampling; however, study interpretation is limited as only 16 cases (0.33%) of progression defined as high-grade dysplasia or esophageal adenocarcinoma on follow-up forceps biopsy were identified. No direct evidence of clinical utility was identified. Because combined use of WATS3D with standard surveillance is intended to replace the current standard of care for guiding patient management decisions regarding initiation of treatment or surveillance, direct evidence of clinical utility is required. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals at increased risk of BE who undergo standard screening with adjunctive WATS3D, the evidence includes studies of diagnostic yield, a physician impact study, a decision analytic model, and a retrospective analysis of the manufacturer database. Relevant outcomes are test validity, overall survival, disease-specific survival, change in disease status, and quality of life. Relative diagnostic yields for BE and dysplasia have ranged from 75% to 213% and 88.5% to 274%, respectively. However, available studies have incomplete descriptions of selection criteria, and it is unclear whether study patients are at increased risk as defined by guideline recommendations for screening. In fact, 2 studies were enriched with women in whom screening is generally not recommended by society guidelines. These studies also noted that detected cases of BE in short-segment patients may actually reflect intestinal metaplasia of the cardia, which is thought to carry a significantly lower risk of cancer development compared to traditional BE. In discordant cases where BE or dysplasia were identified only by WATS3D, significant physician management changes included initiation of invasive treatments. Health outcomes stemming from management changes were not reported, and risks associated with overdiagnosis and overtreatment require elucidation. Follow-up data on disease progression in these patients are limited. A retrospective analysis of the manufacturer database found a disease progression rate of 5.79% per patient-year (95% CI, 1.02% to 10.55%) for baseline low-grade dysplasia diagnoses via WATS3D sampling; however, study interpretation is limited as only 16 cases (0.33%) of progression defined as high-grade dysplasia or esophageal adenocarcinoma on follow-up forceps biopsy were identified. No direct evidence of clinical utility was identified. Because combined use of WATS3D with standard screening is intended to replace the current standard of care for guiding patient management decisions regarding initiation of treatment or surveillance, direct evidence of clinical utility is required. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.
Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2022</td>
<td>Annual policy review. Description, summary and references updated. Policy statements unchanged.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References