Medical Policy
Ablation of Peripheral Nerves to Treat Pain

Table of Contents
- Policy: Commercial
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 794
BCBSA Reference Number: 7.01.154
NCD/LCD: N/A

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Radiofrequency ablation of peripheral nerves to treat pain associated with knee osteoarthritis or plantar fasciitis is considered INVESTIGATIONAL.

Cryoneurolysis of peripheral nerves to treat pain associated with knee osteoarthritis or total knee arthroplasty is considered INVESTIGATIONAL.

Radiofrequency ablation or cryoneurolysis of peripheral nerves to treat pain associated with occipital neuralgia or cervicogenic headache is considered INVESTIGATIONAL.

Ablation of peripheral nerves to treat pain is considered INVESTIGATIONAL in all other conditions, with the exception of facet joint pain (see Medical Policy #140 Facet Joint Denervation).

Prior Authorization Information
Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Product</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>
Medicare HMO Blue℠ This is not a covered service.
Medicare PPO Blue℠ This is not a covered service.

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

According to the policy statement above, the following CPT codes are considered investigational for the conditions listed for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

<table>
<thead>
<tr>
<th>CPT Codes</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>64640</td>
<td>Destruction by neurolytic agent; other peripheral nerve or branch</td>
</tr>
</tbody>
</table>

Description

Knee Osteoarthritis
Knee OA is common, and often the cause of substantial disability. Among U.S. adults, the most common causes of disability are arthritis and rheumatic disorders.

Treatment
Treatment for OA of the knee aims to alleviate pain and improve function. However, most treatments do not modify the natural history or progression of OA and are not considered curative. Nonsurgical modalities used include exercise; weight loss; various supportive devices; acetaminophen or nonsteroidal anti-inflammatory drugs (eg, ibuprofen); nutritional supplements (glucosamine, chondroitin); and intra-articular viscosupplements. Corticosteroid injection may be considered when relief from nonsteroidal anti-inflammatory drugs is insufficient, or the patient is at risk of gastrointestinal adverse events. If symptom relief is inadequate with conservative measures, invasive treatments may be considered. Total knee arthroplasty is an operative treatment for symptomatic OA of the knee.

Plantar Fasciitis
Plantar fasciitis is a common cause of foot pain in adults, characterized by deep pain in the plantar aspect of the heel, particularly on arising from bed. While the pain may subside with activity, in some patients the pain persists and can impede activities of daily living. On physical examination, firm pressure will elicit a tender spot over the medial tubercle of the calcaneus. The exact etiology of plantar fasciitis is unclear, although a repetitive injury is suspected. Heel spurs are a common associated finding, although it has never been proven that heel spurs cause the pain. Asymptomatic heel spurs can be found in up to 10% of the population.

Treatment
Most cases of plantar fasciitis are treated with conservative therapy, including rest or minimization of running and jumping, heel cups, and nonsteroidal anti-inflammatory drugs. Local steroid injection may also be used. Improvement may take up to 1 year in some cases.

Occipital Neuralgia
Occipital neuralgia is a specific type of headache that is located on one side of the upper neck, back of the head, and behind the ears, and sometimes extending to the scalp, forehead, and behind the eyes. The pain, which may be piercing, throbbing, or electric-shock-like, follows the course of the greater and
lesser occipital nerves. Occipital neuralgia is believed to occur due to pressure or irritation to the occipital nerves, which may result from injury, entrapment by tight muscles, or inflammation.

Treatment
Treatment may include massage and rest, muscle relaxants, nerve blocks, and injection of steroids directly into the affected area.

Cervicogenic Headache
Cervicogenic headache is a headache that is secondary to a disorder of the cervical spine. The pain may be referred from facet joints, intervertebral discs, or soft tissue. The pain is constant rather than throbbing and may be aggravated by movements of the neck or pressure to certain areas on the neck. The first 3 cervical spinal nerves can refer pain to the head. The C1 suboccipital nerve innervates the atlanto-occipital joint; the C2 spinal nerve and the C3 dorsal ramus have close proximity to and innervate the C2-C3 facet joint. The C2-3 facet joint is the most frequent source of a cervicogenic headache. A diagnosis of a cervicogenic headache may be confirmed by an anesthetic block of the lateral atlanto-axial joint, the C2-3 facet joint, or the C3-4 facet joint.

Treatment
Treatment may include nerve blocks, physical therapy, and exercise.

Nerve Radiofrequency Ablation
Nerve RFA is a minimally invasive method that involves the use of heat and coagulation necrosis to destroy tissue. A needle electrode is inserted through the skin and into the tissue to be ablated. A high-frequency electrical current is applied to the target tissue and a small sphere of tissue is coagulated around the needle by the heat generated. It is theorized that the thermal lesioning of the nerve destroys peripheral sensory nerve endings, resulting in the alleviation of pain. Cooled RFA is a variation of nerve RFA using a water-cooled probe that applies more energy at the desired location without excessive heat diffusing beyond the area, causing less tissue damage away from the nerve (see Table 1). The goal of ablating the nerve is the same.

RFA is also distinguished from pulsed RF treatment, which has been investigated for different types of pain. The mechanism of action of pulsed RF treatment is uncertain but it is thought not to destroy the nerve.1. If it does produce some degree of nerve destruction but is thought to cause less damage than standard RFA. Some studies refer to pulsed RF treatment as ablation.

For the indications assessed in this evidence review, nerve RFA should be distinguished from RF energy applied to areas other than the nerve to cause tissue damage. Some patients have been treated for plantar fasciitis with a fasciotomy procedure using an RF device. This procedure does not ablate a specific nerve.

Table 1. Types of Radiofrequency Ablation

<table>
<thead>
<tr>
<th>Type</th>
<th>Procedure</th>
<th>Tissue Temperature</th>
<th>Key Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard RFA</td>
<td>Electrode tip provides thermal energy for 90 – 130 seconds</td>
<td>70 – 90° C</td>
<td>Longer term pain relief but with more adjacent thermal tissue injury and limitation in size and shape of lesion.</td>
</tr>
<tr>
<td>Pulsed RFA</td>
<td>Non-ablative - provides 20 ms pulses every 30 seconds</td>
<td>42° C</td>
<td>Limits tissue damage but results in shorter duration of pain relief</td>
</tr>
<tr>
<td>Cooled RFA</td>
<td>Water circulates through RF electrode to cool the tip</td>
<td>60° C</td>
<td>Larger lesion with limited thermal injury to tissue. Longer term pain relief.</td>
</tr>
</tbody>
</table>

RF: radiofrequency; RFA: radiofrequency ablation; Adapted from Oladeji et al (2019)²

Cryoneurolysis
Cryoneurolysis is being investigated to alleviate pain. Temperatures of -20°C to -100°C applied to a nerve cause Wallerian (anterograde axonal) degeneration, with disruption of nerve structure and conduction but maintenance of the perineural and epineural elements of the nerve bundle. Wallerian degeneration allows complete regeneration and recovery of nerve function in about 3 to 5 months. The iovera ° cryoablation system is a portable handheld device that applies percutaneous and targeted delivery of cold to superficial peripheral nerves.

Summary

Description

Radiofrequency ablation (RFA) and cryoneurolysis of nerves have been proposed as treatments for several different types of pain. RFA has been used to treat a number of clinical pain syndromes such as trigeminal neuralgia as well as cervical and lumbar pain. This review evaluates the application of RFA and cryoneurolysis in peripheral sites distant from the spine.

Summary of Evidence

For individuals who have knee osteoarthritis (OA) who receive RFA of peripheral nerves, the evidence includes 2 RCTs with a total of 211 patients with a 6-month follow-up and observational studies with 12 months of follow-up. Relevant outcomes include symptoms, functional outcomes, and quality of life (QOL). Knee OA is a common disorder in older adults. RFA of the genicular nerves has the potential to alleviate pain and improve function in this population and might also delay or eliminate the need for TKA. To date, the evidence on RFA for knee pain includes 3 RCTs with 6-month follow-up and prospective observational studies with 12 to 24 months of follow-up. One of the larger RCTs compared cooled RFA to active control of steroid injection and utilized genicular nerve blocks to select patients for the study. At 1 month after treatment, pain scores on an 11-point NRS differed by less than 1 point, a finding that was statistically significant but of marginal clinical significance. By 3 months after treatment, pain scores had increased in the steroid group, consistent with the known durability of the treatment. Pain scores in the RFA group remained low in patients who remained in the study. Another RCT compared cooled RFA with injection of hyaluronic acid, which has questionable efficacy. At this time, results have been reported in the control group only for the patients who had crossed over to RFA. The durability of this treatment approach at 12 to 24 months has been evaluated in a follow-up to an RCT, a retrospective study, and a small (n=25) independent prospective study. In both of the industry-sponsored publications, 65% of the patients treated with cooled RFA reported a greater than 50% reduction in pain scores at 12 months. In an independent and prospective observational study, about one-third continued to show a response at 1 year after RFA of the genicular nerves. One of the RCTs used stimulation to identify the genicular nerves, rather than genicular nerve blocks with an anesthetic. None of the studies were blinded, which may have biased the subjective outcome measures. It should be noted that the anatomy of the genicular nerves is variable, and the best method for their identification has not been determined. Study in a larger number of patients, preferably in blinded studies with active control and follow-up longer than 12 months, is needed to determine the benefits and potential harms of this treatment. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have knee OA or TKA who receive cryoneurolysis of peripheral nerves, the evidence includes an RCT with 180 patients and a retrospective comparative study. Relevant outcomes include symptoms, functional outcomes, and QOL. Cryoneurolysis in patients with knee OA resulted in a greater decrease in WOMAC pain score, WOMAC total score, and VAS score at 30 days compared with sham-treated controls. However, subsequent measurements showed no significant benefit of cryoneurolysis on WOMAC score at 60 days or VAS scores at 60 or 90 days. Perioperative cryoneurolysis was shown in a retrospective comparison to reduce the length of stay and opioid use in patients undergoing TKA. These results need to be confirmed in an RCT. Several technical issues including the optimal number of applications for each nerve, the duration of treatment, and the duration of thawing before moving the cannula have not been resolved. The most effective method for determining probe insertion location (eg, ultrasound-guided or based on anatomic landmarks) also need to be established. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have plantar fasciitis who receive RFA of peripheral nerves, the evidence includes two RCTs. Relevant outcomes include symptoms, functional outcomes, and QOL. One of the randomized
For individuals who have occipital neuralgia or cervicogenic headache who receive RFA or cryoneurolysis of peripheral nerves, the evidence includes RCTs and systematic reviews of RCTS. Relevant outcomes are symptoms, functional outcomes, and QOL. No RCTs of RFA for chronic occipital neuralgia have been identified. Three RCTs of RFA for a cervicogenic headache have been published, none of which were high quality. Pain is a subjective, patient-reported measure that is particularly susceptible to a placebo effect. Randomized trials with sham or active-controls are needed to evaluate the efficacy of this treatment. One controlled trial found a temporary benefit of cryoneurolysis for cervicogenic headache, but the effect was not significantly better than injection of corticosteroid and local anesthetic. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2021</td>
<td>BCBSA National medical policy review. Cryoneurolysis was added to the investigational statement on occipital neuralgia or cervicogenic headache; other statements unchanged. Effective 2/1/2021.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- [Medical Policy Terms of Use](#)
- [Managed Care Guidelines](#)
- [Indemnity/PPO Guidelines](#)
- [Clinical Exception Process](#)
- [Medical Technology Assessment Guidelines](#)

References

6. Davis T, Loudermilk E, DePalma M, et al. Prospective, Multicenter, Randomized, Crossover Clinical Trial Comparing the Safety and Effectiveness of Cooled Radiofrequency Ablation With Corticosteroid

