Medical Policy

Minimally Invasive and Surgical Treatment Options for Benign Prostatic Hyperplasia (BPH)

Table of Contents

- Policy: Commercial
- Description
- Information Pertaining to All Policies
- Authorization Information
- Policy History
- References
- Coding Information
- Endnotes

Policy Number: 744
BCBSA Reference Number: 7.01.151
NCD/LCD: NA

Related Policies
None

Table of Contents

Prostatic Urethral Lift ... 1
Transurethral Water Vapor Thermal Therapy (Rezum) .. 2
Waterjet tissue ablation (Aquablation) ... 2
Laser Based Procedures ... 2
Transurethral incision of the prostate (TUIP) .. 3
Transurethral microwave therapy (TUMT) ... 3
Transurethral Needle Ablation (TUNA) ... 3
Cryosurgical Ablation and Prostatic Embolization ... 3

Policy¹

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO Blue℠ and Medicare PPO Blue℠ Members

Prostatic Urethral Lift
Prostatic urethral lift may be considered MEDICALLY NECESSARY for the treatment of moderate to severe lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia as an alternative to Transurethral resection of the prostate (TURP) or open prostatectomy when all of the following criteria are met:

- The patient has persistent or progressive lower urinary tract symptoms despite medical therapy (α1-adrenergic antagonists maximally titrated, 5α-reductase inhibitors, or combination medication therapy
maximally titrated) over a trial period of no less than 6 months OR the patient is unable to tolerate medical therapy; AND
• Prostate gland volume is ≤80 mL; AND
• Prostate anatomy demonstrates normal bladder neck without an obstructive or protruding median lobe; AND
• Patient does not have urinary retention, urinary tract infection, or recent prostatitis (within past year); AND
• Patient has had appropriate testing to exclude diagnosis of prostate cancer; AND
• Patient does not have a known allergy to nickel, titanium or stainless steel.

Use of prostatic urethral lift in other situations, including repeat procedures, is considered INVESTIGATIONAL.

Transurethral Water Vapor Thermal Therapy (Rezum)
Transurethral Water Vapor Thermal Therapy (Rezum) in patients 50 and older with or without obstructed median lobe, may be considered MEDICALLY NECESSARY for the treatment of moderate to severe lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia as an alternative to Transurethral resection of the prostate (TURP) or open prostatectomy when all of the following criteria are met:
• The patient has persistent or progressive lower urinary tract symptoms despite medical therapy (α1-adrenergic antagonists maximally titrated, 5a-reductase inhibitors, or combination medication therapy maximally titrated) over a trial period of no less than 6 months OR the patient is not a suitable candidate for anesthesia or is unable to tolerate medical therapy; AND
• IPSS score ≥12, AND
• Prostate gland volume is ≤80 mL; AND
• Patient does not have an active urinary tract infection or prostatitis within past year; AND
• If patient has urinary retention, they may be a candidate for Rezum only if they cannot tolerate anesthesia or are a suboptimal candidate for anesthesia, AND
• Patient has had appropriate testing to exclude diagnosis of prostate cancer.

Waterjet tissue ablation (Aquablation)
Waterjet tissue ablation (Aquablation) in patients 45 and older may be considered MEDICALLY NECESSARY for the treatment of moderate to severe lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia as an alternative to Transurethral resection of the prostate (TURP) or open prostatectomy when all of the following criteria are met:
• The patient has persistent or progressive lower urinary tract symptoms despite medical therapy (α1-adrenergic antagonists maximally titrated, 5a-reductase inhibitors, or combination medication therapy maximally titrated) over a trial period of no less than 6 months OR the patient is not a suitable candidate for anesthesia or is unable to tolerate medical therapy; AND
• IPSS score ≥12, AND
• Prostate gland volume ≥30 – 150cc; AND
• Patient does not have an active urinary tract infection or prostatitis within the past year; AND
• Patient does not have diagnosis of urethral stricture, meatal stenosis, or bladder neck contracture, AND
• Patient does not have a known allergy to nickel, titanium or stainless steel, AND
• Patient has had appropriate testing to exclude diagnosis of prostate cancer.

Laser Based Procedures
Laser Based procedures such as photoselective vaporization of the prostate (PVP), holmium laser ablation of the prostate (HoLAP) or Holmium Laser enucleation of the prostate (HoLEP) in patients 40 and over may be considered MEDICALLY NECESSARY for the treatment of moderate to severe lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia as an alternative to Transurethral resection of the prostate (TURP) or open prostatectomy when all of the following criteria are met:
• The patient has persistent or progressive lower urinary tract symptoms despite medical therapy (α1-adrenergic antagonists maximally titrated, 5a-reductase inhibitors, or combination medication therapy
maximally titrated) over a trial period of no less than 6 months OR the patient is not a suitable
candidate for anesthesia or is unable to tolerate medical therapy; AND
• IPSS score ≥12, AND
• Patient does not have an active urinary tract infection or prostatitis within past year; AND
• Patient has had appropriate testing to exclude diagnosis of prostate cancer.

Transurethral incision of the prostate (TUIP)
Transurethral incision of the prostate (TUIP) may be considered MEDICALLY NECESSARY for the
treatment of moderate to severe lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia
as an alternative to Transurethral resection of the prostate (TURP) or open prostatectomy when all of the
following criteria are met:
• The patient has persistent or progressive lower urinary tract symptoms despite medical therapy
(α1-adrenergic antagonists maximally titrated, 5α-reductase inhibitors, or combination medication
therapy maximally titrated) over a trial period of no less than 6 months, OR the patient is not a
suitable candidate for anesthesia or is unable to tolerate medical therapy; AND
• IPSS score ≥12, AND
• Prostate anatomy demonstrates normal bladder neck without an obstructive median lobe; AND
• Prostate size ≤30cc, AND
• Patient does not have an active urinary tract infection or prostatitis within past year; AND
• Patient has had appropriate testing to exclude diagnosis of prostate cancer.

Transurethral microwave therapy (TUMT)
Transurethral microwave therapy (TUMT) may be considered MEDICALLY NECESSARY for the
treatment of moderate to severe lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia
as an alternative to Transurethral resection of the prostate (TURP) or open prostatectomy when all of the
following criteria are met:
• The patient has persistent or progressive lower urinary tract symptoms despite medical therapy
(α1-adrenergic antagonists maximally titrated, 5α-reductase inhibitors, or combination medication
therapy maximally titrated) over a trial period of no less than 6 months OR is unable to tolerate medical
therapy; AND
• IPSS score ≥12, AND
• Patient does not have an active urinary tract infection or prostatitis within past year; AND
• Patient has had appropriate testing to exclude diagnosis of prostate cancer, AND
• The patient is not a suitable candidate for anesthesia, AND
• Patient is not a suitable candidate for any of the procedures listed above.

Transurethral Needle Ablation (TUNA)
Transurethral Needle Ablation (TUNA) is considered NOT MEDICALLY NECESSARY for any
indication.

Cryosurgical Ablation and Prostatic Embolization
The following procedures for benign prostatic hyperplasia are considered INVESTIGATIONAL
1. Cryosurgical ablation
2. Prostatic embolization.

Prior Authorization Information
Inpatient
• For services described in this policy, precertification/preauthorization IS REQUIRED if the procedure
is performed inpatient.

Outpatient
• For services described in this policy, see below for situations where prior authorization might be
required if the procedure is performed outpatient.
Prior authorization is not required.

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0421T</td>
<td>Transurethral waterjet ablation of prostate, including control of post-operative bleeding, including ultrasound guidance, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, and internal urethrotomy are included when performed)</td>
</tr>
<tr>
<td>52441</td>
<td>Cystourethroscopy, with insertion of permanent adjustable transprostatic implant; single implant</td>
</tr>
<tr>
<td>52442</td>
<td>Cystourethroscopy, with insertion of permanent adjustable transprostatic implant; each additional permanent adjustable transprostatic implant (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>52450</td>
<td>Transurethral incision of prostate</td>
</tr>
<tr>
<td>52647</td>
<td>Laser coagulation of prostate, including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, and internal urethrotomy are included if performed)</td>
</tr>
<tr>
<td>52648</td>
<td>Laser vaporization of prostate, including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, internal urethrotomy and transurethral resection of prostate are included if performed)</td>
</tr>
<tr>
<td>52649</td>
<td>Laser enucleation of the prostate with morcellation, including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, internal urethrotomy and transurethral resection of prostate are included if performed)</td>
</tr>
<tr>
<td>53850</td>
<td>Transurethral destruction of prostate tissue; by microwave thermotherapy</td>
</tr>
<tr>
<td>53854</td>
<td>Transurethral destruction of prostate tissue; by radiofrequency generated water vapor thermotherapy</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2596</td>
<td>Probe, image guided, robotic, waterjet ablation</td>
</tr>
<tr>
<td>C9739</td>
<td>Cystourethroscopy, with insertion of transprostatic implant; 1 to 3 implants</td>
</tr>
<tr>
<td>C9740</td>
<td>Cystourethroscopy, with insertion of transprostatic implant; 4 or more implants</td>
</tr>
</tbody>
</table>
The following ICD Diagnosis Code is considered medically necessary when submitted with the CPT and/or HCPCS codes above if medical necessity criteria are met:

ICD-10 Diagnosis Coding

<table>
<thead>
<tr>
<th>ICD-10-CM-diagnosis codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N40.1</td>
<td>Benign prostatic hyperplasia with lower urinary tract symptoms</td>
</tr>
</tbody>
</table>

The following CPT code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53852</td>
<td>Transurethral destruction of prostate tissue; by radiofrequency thermotherapy</td>
</tr>
</tbody>
</table>

According to the policy statement above, the following CPT codes are considered investigational for benign prostatic hyperplasia for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue, and Medicare PPO Blue:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55873</td>
<td>Cryosurgical ablation of the prostate (includes ultrasonic guidance and monitoring)</td>
</tr>
</tbody>
</table>

Description

Benign Prostatic Hyperplasia

BPH is a common disorder among older individuals that results from hyperplastic nodules in the periurethral or transitional zone of the prostate. The clinical manifestations of BPH include increased urinary frequency, nocturia, urgency or hesitancy to urinate, and a weak stream when urinating. The urinary tract symptoms often progress with worsening hypertrophy and may lead to acute urinary retention, incontinence, renal insufficiency, and/or urinary tract infection.

Two scores are widely used to evaluate BPH-related symptoms: the American Urological Association Symptom Index (AUASI) and the International Prostate Symptom Score (IPSS). The AUASI is a self-administered 7-item questionnaire assessing the severity of various urinary symptoms. ¹ Total AUASI scores range from 0 to 35, with overall severity categorized as mild (≤7), moderate (8-19), or severe (20-35).² The IPSS incorporates questions from the AUASI and a quality of life question or a "Bother score."³

Many treatment options are available to help manage moderate to severe lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). In most cases, medication management is used as the initial course of therapy followed by transurethral resection of the prostate (TURP). TURP is considered the GOLD standard of care however, this is a surgical procedure requiring the use of anesthesia and is associated with longer recovery times and significant side effects. Some common side effects include heavy bleeding, urinary tract infections, and erectile dysfunction or retrograde ejaculation. TURP is not indicated for individuals who are contraindicated for general anesthesia or are desiring of preserving sexual function. Rates of retreatment are lower with TURP than other treatment modalities.

Less invasive treatment options such as the Prostatic Urethral Lift (PUL) and transurethral water vapor thermal therapy (Rezum) have been evaluated for the treatment of BPH. Prostatic urethral lift (PUL) involves the insertion of one or more permanent implants into the prostate, which retracts prostatic tissue and maintains an expanded urethral lumen. Rezum water vapor thermal therapy delivers a heated stream of water vaporizing prostate tissue and immediately reducing symptoms. Unlike other BPH treatments, Rezum allows for treatment of an obstructed median lobe which may have additional impacts on LUTS. PUL and Rezum are indicated for men with moderate to severe LUTS with prostate sizes <80 and can be
done in the outpatient setting without the use of general anesthesia. Both PUL and Rezum are safe options for men who have not responded adequately to medication therapy, are contraindicated to more invasive treatment options, and are desiring of preserving sexual function.

Aquablation therapy has been evaluated for BPH and was recently approved by the FDA to treat enlarged prostates up to 150cc. Aquablation uses a heat free waterjet in conjunction with the AquaBeam robotic system to remove prostate tissue blocking the flow of urine. Aquablation therapy uses a cystoscope in combination with ultrasound imaging providing for direct visualization of the prostate. This provides for greater efficacy and treatment to areas of the prostate that will not result in further complications such as erectile dysfunction or incontinence. Aquablation is a surgical procedure requiring anesthesia.

Laser therapies such as photoselective vaporization of the prostate (PVP), holmium laser ablation of the prostate (HoLAP) or Holmium Laser enucleation of the prostate (HoLEP) are options for individuals who may be taking blood thinners or are contraindicated to treatment options that may cause heavy bleeding. PVP and HoLAP use laser therapy to vaporize prostate tissue and allow for greater urinary flow. HoLEP is a laser-based procedure that excises prostate tissue blocking the urethra. Laser based procedures are effective for reducing prostate size and allowing for greater urinary flow while providing shorter recovery times, improvements in urinary symptoms and are not associated with increased risk of bleeding. Some of the adverse events or side effects of laser therapies include UTI, stricture of the urethra, erectile dysfunction, retrograde ejaculation, and need for retreatment.

Transurethral incision of the prostate (TUIP) is done by inserting small incisions into the prostate through the urethra allowing for urine to pass through more freely. TUIP is indicated for small or moderate size prostates and is beneficial for patients who are contraindicated to medication management or other therapies. TUIP is a similarly effective procedure for reducing LUTS symptoms, providing a faster recovery period time, and lower incidences of erectile dysfunction and post op complications/bleeding. While TUIP is described as a viable alternative to TURP, the effectiveness of this procedure in larger prostates (>30) is not well documented.

Transurethral Microwave ablation (TUMT) is an outpatient treatment option for benign prostatic hyperplasia. TUMT has been evaluated as an effective option for men with smaller to medium size prostates who are not candidates for alternative treatments and who are suboptimal candidates for anesthesia. During TUMT, a microwave antenna is inserted into the urethra and deliver microwave thermal energy to the prostate to heat and destroy enlarged tissue. TUMT is known as a safer alternative with no requirement for anesthesia, lower risk of bleeding and low risk of long-term side effects. The rates of retreatment for TUMT are higher than those for TURP or other minimally invasive treatment options however, the low risk of side effects or complications makes this a beneficial treatment option for certain target populations.

Transurethral needle ablation (TUNA) has been used to treat Benign prostatic hyperplasia for many years. TUNA is done by inserting interstitial radiofrequency (RF) needles into the urethra and delivering radiofrequency ablation to the lateral lobes of the prostate. TUNA helped to reduce symptoms of LUTS due to BPH however as newer, more effective treatment options became available, TUNA has fallen out of favor. In some scenarios patients who received TUNA had a new onset or worsening of symptoms due to chronic inflammation in the areas treated. TUNA has also been associated with high rates of retreatment and long-term side effects.

Cryosurgical Ablation is the process of freezing tissue around the prostate during ultrasound or MRI ultrasound guidance. While often used to treat prostate cancer, cryosurgical ablation has been evaluated for the treatment of Benign Prostatic Hyperplasia. During the procedure, multiple metal probes are inserted around and under the prostate via ultrasound guidance and are then cooled sufficiently enough to freeze prostate tissue resulting in cell death and reduction of prostate gland size.

Prostatic Arterial Embolization is a minimally invasive treatment option that works by reducing blood supply to prostatic arteries. An interventional radiologist injects microspheres through a catheter to the blood vessels around the prostate, reducing the blood supply to multiple different areas. No surgical
intervention is required for this procedure and recovery times are often less than that of TURP. PAE requires significant clinician training and is associated with some common side effects such as “post-PAE syndrome, blood in urine or semen, rare cases of prostatic or bladder spasms.

Summary
For individuals who have lower urinary tract obstruction symptoms due to BPH who do not have sufficient response to medical therapy or are experiencing significant side effects with medical therapy and receive a PUL, the evidence includes systematic reviews, randomized controlled trials (RCTs), and noncomparative studies. Relevant outcomes are symptoms, functional outcomes, health status measures, quality of life, and treatment-related morbidity. One RCT, the BPH6 study, compared the PUL procedure with transurethral resection of the prostate and reported that the PUL procedure was noninferior for the study's composite endpoint, which required concurrent fulfillment of 6 independently validated measures of symptoms, safety, and sexual health. While transurethral resection of the prostate was superior to PUL in managing lower urinary tract symptoms, PUL did provide significant symptom improvement over 2 years. PUL was further superior to transurethral resection of the prostate in preserving ejaculatory function. These findings were corroborated by another RCT (the LIFT study), which compared PUL with sham control. Patients underwent washout of BPH medications before enrollment. LIFT reported that patients with the PUL procedure, compared with patients who had sham surgery and no BPH medication, had greater improvements in lower urinary tract symptoms without worsened sexual function at 3 months. After 3 months, patients were given the option to have PUL surgery; 80% of the patients with sham procedures chose that option. Publications from this trial reported that functional improvements were durable over 3-, 4-, and 5-year follow-ups in a subset of patients treated with PUL; there was a high number of exclusions and loss to follow-up in that group. The BPH6 and LIFT RCTs included men with prostate volume up to 80 cm³ and excluded men with median lobe obstruction. Selection criteria of patients for whom evidence is sufficient to support improvement are derived from clinical trial eligibility criteria, product labeling, and clinical input. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have benign prostatic hyperplasia who receive transurethral water vapor thermal therapy (Rezum), the evidence includes a randomized controlled trial with a five year follow up phase and 3 observational studies. The outcomes of interest are symptoms, quality of life, and treatment-related morbidity. At three months, lower urinary tract symptoms were improved compared to sham and lasted through to 5 years. No adverse effects on erectile or ejaculatory function were observed, and improvements were sustained through five years of follow-up with a retreatment rate of 4.4%, comparable to TURP. While there are no studies comparing Rezum to other treatments for LUTS, the study results demonstrate clinically meaningful improvement and similar results from clinical trials for PUL. The benefits of Rezum allow for similar improvements in reduction of symptoms for LUTS, shorter recovery period times, and limited occurrence of adverse events including catherization, urinary tract infections and sexual dysfunction. The evidence is sufficient to determine the effects of the technology on health outcomes.

For individuals who have benign prostatic hyperplasia who receive Aquablation, the evidence includes 2 multicenter, double-blind, randomized controlled trials with 5-year outcome measures. The initial trial included patients with prostate sizes of >30-80cc, a diagnosis of moderate to severe LUTS and IPSS scores ≥ 12. The second RCT includes 2 year follow up data for patients with prostate sizes between 30cc-150cc. Both studies compared primary and secondary outcomes to that of TURP and demonstrated clinically significant improvement in symptoms of LUTS, comparable rates of retreatment (4.3% and 1.5%), faster recovery periods, limited adverse events and increased preservation of sexual function (10% vs. 36%). Aquablation was recommended by AUA and NICE as an effective and safe treatment option for reducing symptoms of LUTS. The evidence is sufficient to determine the effects of the technology on health outcomes.

For individuals who receive TUIP, the evidence includes 10 randomized controlled trials comparing TUIP to TURP. TUIP has been established as a minimally invasive alternative to TURP with significant clinical outcomes. TUIP has demonstrated significant reductions in operative times, low rates of post procedure complications and limited long-term effects. TUIP does not require the use of anesthesia for
contraindicated patients however, the benefit of the procedure is mostly found when done on smaller size prostates (<30g) and in patients where there is evidence of a obstructed median lobe. The evidence is sufficient to determine the effects of the technology on health outcomes.

For individuals who receive laser-based procedures for BPH, the evidence includes multiple randomized controlled trials, systematic reviews, and metaanalysis. Primary outcomes of greenlight laser, PVP, HoEp and HoAP laser procedures included differences in recovery times, adverse effects, lower complication rates, and reduction of symptoms compared to TURP. In all cases, laser-based procedures showed similar or significant improvement in reduction of symptoms when compared to surgical standards of care. Greenlight laser, photoselective vaporization of the prostate (PVP) and HoLEP, demonstrated shorter recovery periods and less post procedure complications (urinary tract infections, need for catherization, postoperative bleeding, retrograde ejaculation, erectile dysfunction) when compared to TURP. Symptom reduction was comparable for laser-based procedures to TURP. The evidence is sufficient to determine the effects of the technology on health outcomes.

Transurethral Microwave ablation (TUMT) has been evaluated in multiple randomized controlled trials as a minimally invasive alternative to TURP and to SHAM groups. TUMT is associated with lower rates of post-operative bleeding, postoperative complications and is an appropriate treatment option for patients who are not suitable candidates for anesthesia or more invasive surgical approaches. While the outcomes for TUMT do not improve symptoms compared to TURP and other SHAM trials, it has been established as an appropriate and minimally invasive treatment option in specific scenarios. TUMT is an effective treatment option for patients who may be severely contracted and unable to tolerate alternative minimally invasive treatments or are poor surgical candidates. The evidence is sufficient to determine the effects of the technology on health outcomes.

Transurethral needle ablation (TUNA) has been evaluated in multiple randomized controlled trials as a minimally invasive alternative to TURP. In some studies, TUNA demonstrates clinically significant symptom reduction but also carries a high rate of adverse events and need for retreatment. Limitations in the available studies include significant differences in retreatment rates, variability in rates of postoperative complications and variability in primary outcomes. TUNA is no longer recommended as a standard of care or alternative to TURP by the American Urology Association. The evidence is insufficient to determine the effects of the technology on health outcomes.

While done primarily for the treatment of prostate cancer, cryosurgical ablation of the prostate has been evaluated in small case reviews for the treatment of benign prostatic hyperplasia. Patients undergoing cryosurgical ablation of the prostate reported reduced symptoms of lower urinary tract symptoms after treatment. Cryosurgical ablation has not been evaluated by the American Urology Association as a viable treatment options or alternative for benign prostatic hyperplasia. Due to the lack of randomized, controlled trials, comparative data or long-term safety and efficacy of cryosurgical ablation for BPH, this procedure is considered investigational. The evidence is insufficient to determine the effects of the technology on health outcomes.

Prostatic arterial embolization (PAE) has been evaluated in single arm prospective studies and one recent randomized comparative study (Insausti et al, 2020). Primary outcomes include reduction of urinary flow output symptoms, decreased IPSS scores, and increased quality of life scores from baseline. While PAE has shorter recovery times and fewer adverse events compared to TURP, clinical outcomes were on par. The available studies are limited by lack of small population sizes, lack of long-term outcomes for randomized control arm, and unknown benefit in different size prostates. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/1/2021</td>
<td>New references added. 6/1/2021.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:
Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

Endnotes

Based on expert opinion.