Medical Policy
Navigated Transcranial Magnetic Stimulation

Table of Contents
• Policy: Commercial
• Policy: Medicare
• Authorization Information
• Coding Information
• Description
• Policy History
• Information Pertaining to All Policies
• References

Policy Number: 596
BCBSA Reference Number: 2.01.90 (For Plan internal use only)
NCD/LCD: N/A

Related Policies
Intraoperative Neurophysiologic Monitoring (Sensory- Evoked Potentials, Motor-Evoked Potentials, EEG Monitoring), #211

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Navigated transcranial magnetic stimulation is INVESTIGATIONAL for all purposes, including but not limited to the preoperative evaluation of individuals being considered for brain surgery, when localization of eloquent areas of the brain (eg, controlling verbal or motor function) is an important consideration in surgical planning.

Prior Authorization Information
Inpatient
• For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
• For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare HMO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Medicare PPO BlueSM</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes
There is no specific procedure code.

Description
Management of Brain Tumors
Surgical management of brain tumors involves resecting the brain tumor and preserving essential brain function. "Mapping" of brain functions, such as body movement and language, is most accurately achieved with direct cortical stimulation (DCS), an intraoperative procedure that lengthens operating times and requires a wide surgical opening. Even if not completely accurate compared with DCS, preoperative techniques that map brain functions may aid in planning the extent of resection and the surgical approach. Although DCS is still usually performed to confirm the brain locations associated with specific functions, preoperative mapping techniques may provide useful information that improves patient outcomes.

Noninvasive Mapping Techniques
The most commonly used tool for the noninvasive localization of brain functions is functional magnetic resonance imaging (fMRI). Functional MRI identifies regions of the brain where there are changes in localized cortical blood oxygenation, which correlate with the neuronal activity associated with a specific motor or speech task being performed as the image is obtained. The accuracy and precision of fMRI depend on the patient's ability to perform the isolated motor task, such as moving the single assigned muscle without moving others. This may be difficult in patients in whom brain tumors have caused partial or complete paresis. The reliability of fMRI in mapping language areas has been questioned. Guissani et al (2010) reviewed several studies comparing fMRI with DCS of language areas and found large variability in the sensitivity and specificity rates of fMRI.1 Reviewers also pointed out a major conceptual point in how fMRI and DCS "map" language areas: fMRI identifies regional oxygenation changes, which show that a particular region of the brain is involved in the capacity of interest, whereas DCS locates specific areas in which the activity of interest is disrupted. Regions of the brain involved in a certain activity may not necessarily be required for that activity and could theoretically be safely resected.

Magnetoencephalography (MEG) is also used to map brain activity. In this procedure, electromagnetic recorders are attached to the scalp. Unlike electroencephalography, MEG records magnetic fields generated by electric currents in the brain, rather than the electric currents themselves. Magnetic fields tend to be less distorted by the skull and scalp than electric currents, yielding an improved spatial resolution. MEG is conducted in a magnetically shielded room to screen out environmental electric or magnetic noises that could interfere with the MEG recording. (See evidence review 6.01.21 for additional information on MEG and magnetic resonance imaging.)

Navigated transcranial magnetic stimulation (nTMS) is a noninvasive imaging method for evaluating eloquent brain areas. Transcranial magnetic pulses are delivered to the patient as a navigation system calculates the strength, location, and direction of the stimulating magnetic field. The locations of these pulses are registered to a magnetic resonance image of the patient's brain. Surface electromyography electrodes are attached to various limb muscles of the patient. Moving the magnetic stimulation source to various parts of the brain causes electromyography electrodes to respond, indicating the part of the cortex involved in particular muscle movements. For evaluation of language areas, magnetic stimulation areas that disrupt specific speech tasks are thought to identify parts of the brain involved in speech function. Navigated TMS can be considered a noninvasive alternative to DCS, in which electrodes are directly applied to the surface of the cortex during craniotomy. Navigated TMS is being evaluated as an
alternative to other noninvasive cortical mapping techniques (eg, fMRI, MEG) for presurgical identification of cortical areas involved in motor and language functions. Navigated TMS, used for cortical language area mapping, is also being investigated in combination with diffusion tensor imaging tractography for subcortical white matter tract mapping.

**Summary**

**Description**

Navigated transcranial magnetic stimulation (nTMS) is a noninvasive imaging method for evaluating eloquent brain areas (eg, those controlling motor or language function). Navigated TMS is being evaluated as an alternative to other noninvasive cortical mapping techniques for presurgical identification of eloquent areas.

**Summary of Evidence**

For individuals who have brain lesion(s) undergoing preoperative evaluation for localization of eloquent areas of the brain who receive navigated transcranial magnetic stimulation (nTMS), the evidence includes systematic reviews, observational studies, and case series. Relevant outcomes are overall survival (OS), test accuracy, morbid events, and functional outcomes. Several studies have evaluated the distance between nTMS hotspots and direct cortical stimulation (DCS) hotspots for the same muscle. Although the average distance in most studies is 10 mm or less, this does not take into account the error margin in this average distance or whether hotspots are missed. It is difficult to verify nTMS hotspots fully because only exposed cortical areas can be verified with DCS. Limited studies of nTMS evaluating language areas have shown high false-positive rates (low specificity) and sensitivity that may be insufficient for clinical use. Several controlled observational studies have compared outcomes in patients undergoing nTMS with those (generally pre-TMS historical controls) who did not undergo nTMS. Findings of the studies were mixed. A meta-analysis of observational studies found improved outcomes with preoperative nTMS mapping in patients with motor-eloquent brain tumors. However, in individual observational studies, outcomes were not consistently better in patients who underwent presurgical nTMS. For example, OS did not differ significantly between groups in 2 studies. The controlled observational studies had various methodologic limitations and, being nonrandomized, might not have adequately controlled for differences in patient groups, which could have biased outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

**Policy History**

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/2023</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>8/2022</td>
<td>Annual policy review. No references added. Policy statement terminology changed from &quot;patients&quot; to &quot;individuals&quot;; intent unchanged.</td>
</tr>
<tr>
<td>9/2020</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>8/2019</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2018</td>
<td>Clarified coding information.</td>
</tr>
<tr>
<td>7/2017</td>
<td>Annual policy review. New references added.</td>
</tr>
<tr>
<td>7/2016</td>
<td>Annual policy review. New references added.</td>
</tr>
</tbody>
</table>

**Information Pertaining to All Blue Cross Blue Shield Medical Policies**

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
References


