

Blue Cross Blue Shield of Massachusetts is an Independent Licenses of the Blue Cross and Blue Shield Association

Medical Policy

Percutaneous and Subcutaneous Tibial Nerve Stimulation

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 583

BCBSA Reference Number: 7.01.106 (For Plan internal use only)

Related Policies

- Biofeedback as a Treatment of Fecal Incontinence or Constipation, #308
- Biofeedback as a Treatment of Urinary Incontinence, #173
- Botulinum Toxin, #006
- Injectable Bulking Agents for the Treatment of Urinary and Fecal Incontinence, #471
- Pelvic Floor Stimulation as a Treatment of Urinary Incontinence, #470
- Percutaneous Electrical Nerve Stimulation (PENS) and Percutaneous Neuromodulation Therapy (PNT), #172
- Sacral Nerve Neuromodulation/Stimulation, #153
- Transanal Radiofrequency Treatment of Fecal Incontinence, #309

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Percutaneous tibial nerve stimulation for an initial 12-week course* is considered <u>MEDICALLY</u> <u>NECESSARY</u> for individuals with non-neurogenic urinary dysfunction including overactive bladder who have **both**:

- failed behavioral therapy following an appropriate duration of 8 to 12 weeks without meeting treatment goals; and
- failed pharmacologic therapy following 4 to 8 weeks of treatment without meeting treatment goals.

Maintenance therapy* using monthly percutaneous tibial nerve stimulation is considered <u>MEDICALLY</u> <u>NECESSARY</u> for individuals following a 12-week initial course of percutaneous tibial nerve stimulation that resulted in improved urinary dysfunction meeting treatment goals.

*Management criteria would be **once-per-week for 12 weeks and once-per-month afterward for maintenance treatments**.

*Annual evaluation by a physician may be performed to ensure efficacy is continuing for maintenance percutaneous tibial nerve stimulation treatments.

Percutaneous tibial nerve stimulation is considered **INVESTIGATIONAL** for all other indications, including but not limited to the following:

- Neurogenic bladder dysfunction
- Fecal incontinence.

Subcutaneous tibial nerve stimulation delivered by an implantable peripheral neurostimulator system (e.g., eCoin) is considered INVESTIGATIONAL for all indications, including individuals with non-neurogenic urinary dysfunction including overactive bladder.

Prior Authorization Information

Inpatient

 For services described in this policy, precertification/preauthorization <u>IS REQUIRED</u> if the procedure is performed inpatient.

Outpatient

For services described in this policy, see below for situations where prior authorization <u>might be</u> <u>required</u> if the procedure is performed <u>outpatient</u>.

	Outpatient
Commercial Managed Care (HMO and POS)	Prior authorization is not required .
Commercial PPO and Indemnity	Prior authorization is not required .

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above <u>medical necessity criteria MUST</u> be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

CPT Codes

CPT codes:	Code Description
	Percutaneous implantation or replacement of integrated single device neurostimulation
	system including electrode array and receiver or pulse generator, including analysis,
0587T	programming, and imaging guidance when performed, posterior tibial nerve
	Revision or removal of integrated single device neurostimulation system including
	electrode array and receiver or pulse generator, including analysis, programming, and
0588T	imaging guidance when performed, posterior tibial nerve
	Electronic analysis with simple programming of implanted integrated neurostimulation
	system (eg, electrode array and receiver), including contact group(s), amplitude, pulse
	width, frequency (Hz), on/off cycling, burst, dose lockout, patient-selectable
	parameters, responsive neurostimulation, detection algorithms, closed-loop
	parameters, and passive parameters, when performed by physician or other qualified
0589T	health care professional, posterior tibial nerve, 1-3 parameters
	Electronic analysis with complex programming of implanted integrated
	neurostimulation system (eg, electrode array and receiver), including contact group(s),
	amplitude, pulse width, frequency (Hz), on/off cycling, burst, dose lockout, patient-
	selectable parameters, responsive neurostimulation, detection algorithms, closed-loop
	parameters, and passive parameters, when performed by physician or other qualified
0590T	health care professional, posterior tibial nerve, 4 or more parameters

	Posterior tibial neurostimulation, percutaneous needle electrode, single treatment,
64566	includes programming

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT codes above if <u>medical necessity criteria</u> are met:

ICD-10 Diagnosis Coding

ICD-10-CM- diagnosis codes:	Code Description
N32.81	Overactive bladder
N39.41	Urge incontinence
N39.42	Incontinence without sensory awareness
N39.43	Post-void dribbling
N39.44	Nocturnal enuresis
N39.45	Continuous leakage
N39.46	Mixed incontinence
N39.490	Overflow incontinence
N39.492	Postural (urinary) incontinence
N39.498	Other specified urinary incontinence
R32	Unspecified urinary incontinence
R35.0	Frequency of micturition
R39.15	Urgency of urination

The following CPT code is considered investigational for <u>Commercial Members: Managed Care</u> (HMO and POS), PPO, Indemnity, <u>Medicare HMO Blue and Medicare PPO Blue:</u>

HCPCS Codes

HCPCS	
codes:	Code Description
E0736	Transcutaneous tibial nerve stimulator

Description

Voiding Dysfunction

Common causes of non-neurogenic voiding dysfunction are pelvic floor neuromuscular changes (eg, from pregnancy, childbirth, surgery), inflammation, medication (eg, diuretics, anticholinergics), obesity, and psychogenic factors. Overactive bladder is a non-neurogenic voiding dysfunction characterized by urinary frequency, urgency, urge incontinence, and nonobstructive retention.

Neurogenic bladder dysfunction is caused by neurologic damage in patients with multiple sclerosis, spinal cord injury, detrusor hyperreflexia, or diabetes with peripheral nerve involvement. The symptoms include overflow incontinence, frequency, urgency, urge incontinence, and retention.

Treatment

Approaches to the treatment of incontinence differentiate between urge incontinence and stress incontinence. Conservative behavioral management such as lifestyle modification (eg, dietary changes, weight reduction, fluid management, smoking cessation) along with pelvic floor exercises and bladder training are part of the initial treatment of overactive bladder symptoms and both types of incontinence. Pharmacotherapy is another option, and different medications target different symptoms. Some individuals experience mixed incontinence.

If behavioral therapies and pharmacotherapy are unsuccessful, percutaneous tibial nerve stimulation (PTNS), sacral nerve stimulation, or botulinum toxin may be recommended.

Percutaneous Tibial Nerve Stimulation

The current indication cleared by the U.S. Food and Drug Administration (FDA) for PTNS is overactive bladder and associated symptoms of urinary frequency, urinary urgency, and urge incontinence.

Altering the function of the posterior tibial nerve with PTNS is believed to improve voiding function and control. The mechanism of action is believed to be retrograde stimulation of the lumbosacral nerves (L4-S3) via the posterior tibial nerve located near the ankle. The lumbosacral nerves control the bladder detrusor and perineal floor.

Administration of PTNS consists of inserting a needle above the medial malleolus into the posterior tibial nerve followed by the application of low-voltage (10 mA, 1-10 Hz frequency) electrical stimulation that produces sensory and motor responses as evidenced by a tickling sensation and plantarflexion or fanning of all toes. Noninvasive PTNS has also been delivered with transcutaneous or surface electrodes. The recommended course of treatment is an initial series of 12 weekly office-based treatments followed by an individualized maintenance treatment schedule.

Percutaneous tibial nerve stimulation is less invasive than traditional sacral nerve neuromodulation (see evidence review 7.01.69), which has been successfully used to treat urinary dysfunction but requires implantation of a permanent device. In sacral root neuromodulation, an implantable pulse generator that delivers controlled electrical impulses is attached to wire leads that connect to the sacral nerves, most commonly the S3 nerve root that modulates the neural pathways controlling bladder function.

Percutaneous tibial nerve stimulation has also been proposed as a treatment for non-neurogenic and neurogenic bladder syndromes and fecal incontinence.

Subcutaneous Tibial Nerve Stimulation

The current indication approved by the FDA for subcutaneous tibial nerve stimulation (STNS) is urgency urinary incontinence in individuals who are intolerant or who have had an inadequate response to more conservative treatments or who have undergone a successful trial of PTNS. STNS is administered through a coin-sized leadless battery-powered implant (see Regulatory section). STNS offers a less invasive alternative to traditional sacral nerve neuromodulation and offers a convenient delivery system for automated treatments without the need for chronic outpatient PTNS treatment sessions.

Summary

Description

Percutaneous tibial nerve stimulation (PTNS; also known as posterior tibial nerve stimulation) is an electrical neuromodulation technique used primarily for treating voiding dysfunction. Subcutaneous tibial nerve stimulation via an implantable peripheral neurostimulator is an alternate technique for treating urgency urinary incontinence associated with overactive bladder syndrome.

Summary of Evidence

For individuals who have non-neurogenic urinary dysfunction including overactive bladder and have failed behavioral and pharmacologic therapy who receive an initial course of percutaneous tibial nerve stimulation (PTNS), the evidence includes randomized sham-controlled trials, randomized controlled trials (RCTs) with an active comparator, and systematic reviews. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The Sham Effectiveness in Treatment of Overactive Bladder Symptoms (SUmiT) and the Overactive Bladder Innovative Therapy (OrBIT) trials are 2 key industry-sponsored RCTs. Systematic reviews that included these and other published trials have found short-term reductions in voiding dysfunction with PTNS. The largest, highest quality study was the double-blind, sham-controlled SUmiT trial, which reported a statistically significant benefit of PTNS versus sham at 12 weeks. In an additional, small sham-controlled trial, a 50% reduction in urge incontinent episodes was attained in 71% of the PTNS group compared with 0% in the sham group. The nonblinded OrBIT trial found that PTNS was noninferior to medication therapy at 12 weeks. Adverse events were limited to local irritation effects. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have overactive bladder syndrome that have failed behavioral and pharmacologic therapy who respond to an initial course of PTNS and who receive maintenance PTNS, the evidence includes observational studies and systematic reviews. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The SUmiT and OrBIT trials each included extension studies that followed individuals who responded to the initial course of PTNS and continued to receive periodic maintenance therapy. There is variability in the interval between and frequency of maintenance treatments, and an optimal maintenance regimen remains unclear. There are up to 36 months of observational data available, reporting that there is a durable effect for some of these patients. While comparative data are not available after the initial 12-week treatment period, the observational data support a clinically meaningful benefit for use in individuals who have already failed behavioral and pharmacologic therapy and who respond to the initial course of PTNS. Percutaneous tibial nerve stimulation may allow such individuals to avoid more invasive interventions. Adverse events appear to be limited to local irritation for both short- and long-term PTNS use. Typical regimens schedule maintenance treatments every 4-6 weeks. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have non-neurogenic urinary dysfunction including overactive bladder and who have failed behavioral and pharmacologic therapy or who have responded to an initial course of PTNS and then receive subcutaneous tibial nerve stimulation (STNS), the evidence includes single-arm studies. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The pivotal open-label, single-arm study leading to FDA-approval of the subcutaneously-implanted, wireless eCoin tibial nerve stimulation system demonstrated a 68% response rate at 48 weeks of follow-up which surpassed a performance goal of 40%. However, the certainty of the evidence is limited by the lack of comparator group and a lower response rate observed during the COVID-19 pandemic. Additionally, the FDA noted that the performance goal was identified after patients had already been implanted. An ongoing post-approval study may elucidate the certainty of benefit, including safety of reimplantation given battery lifespan concerns. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have neurogenic bladder dysfunction who receive PTNS, the evidence includes several RCTs and a systematic review of RCTs and observational data. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. Only a few RCTs evaluating tibial nerve stimulation for treating neurogenic bladder have been published to date, and all but 1 performed transcutaneous stimulation rather than PTNS. Studies varied widely in factors such as study populations and comparator interventions. Study findings have not reported that tibial nerve stimulation significantly reduced incontinence symptoms and improved other outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have fecal incontinence who receive PTNS, the evidence includes several RCTs and systematic reviews. Relevant outcomes are symptoms, change in disease status, functional outcomes, quality of life, and treatment-related morbidity. The available RCTs have not found a clear benefit of PTNS. None of the sham-controlled trials found that active stimulation was superior to sham for achieving a reduction in mean weekly fecal incontinence episodes. The larger sham-controlled randomized trial did find a significantly greater decrease in the absolute number of weekly incontinence episodes in the active treatment group, but the overall trial findings did not suggest the superiority of PTNS over sham stimulation. An additional sham-controlled randomized trial did not identify a benefit of PTNS over sham stimulation. A meta-analysis of a single RCT and several observational studies reported that patients receiving sacral nerve stimulation experienced significant benefits compared with patients receiving PTNS. A post hoc analysis of the larger trial suggested a subset of patients with fecal incontinence (those without concomitant obstructive defecation) may benefit from PTNS. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

Date	Action
4/2024	Clarified coding information.

1/2024	Annual policy review. References added. Investigational policy statement added for
	subcutaneous tibial nerve stimulation delivered by an implantable peripheral
	neurostimulator system for all indications, including individuals with non-neurogenic
	urinary dysfunction including overactive bladder. Title updated. Effective 1/1/2024.
10/2022	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
9/2021	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
1/2021	Medicare information removed. See MP #132 Medicare Advantage Management for
	local coverage determination and national coverage determination reference.
10/2020	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
1/2020	Clarified coding information.
10/2019	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
9/2018	Annual policy review. New medically necessary indications described. Prior
	Authorization Information reformatted. Clarified coding information. Effective 9/1/2018.
3/2016	Annual policy review. New references added.
6/2015	Annual policy review. New investigational indications described. Effective 6/1/2015.
1/2015	Clarified coding information.
9/2014	New indications for coverage for Medicare HMO and PPO Blue. Effective 8/10/2014.
4/2014	Annual policy review. New references added.
11/2013	Not medically necessary indications described for Medicare HMO and PPO Blue.
	Effective 10/25/2013. Removed ICD-9 diagnosis codes 596.51, 788.31, 788.33,
	788.34, 788.39, 788.41, 788.63, changed LCD to L31391 as L31523 is no longer
	effective and changed prior authorization information for Medicare HMO and PPO Blue
	as 64566 is not covered per LCD: L31391.
6/2013	Annual policy review. New references added.
2/2013	Annual policy review. New investigational indications described. Effective 2/4/2013.
11/2011-	Medical policy ICD 10 remediation: Formatting, editing and coding updates. No
4/2012	changes to policy statements.
9/2011	Reviewed - Medical Policy Group - Urology and Obstetrics/Gynecology. No changes to
	policy statements.
4/2011	Annual policy review. No changes to policy statements.
1/19/2011	New policy describing covered and non-covered indications. Effective 1/19/2011,.
	1 - 7 - 7

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use

Managed Care Guidelines

Indemnity/PPO Guidelines

Clinical Exception Process

Medical Technology Assessment Guidelines

References

- 1. Wang M, Jian Z, Ma Y, et al. Percutaneous tibial nerve stimulation for overactive bladder syndrome: a systematic review and meta-analysis. Int Urogynecol J. Dec 2020; 31(12): 2457-2471. PMID 32681345
- 2. Xiong SC, Peng L, Hu X, et al. Effectiveness and safety of tibial nerve stimulation versus anticholinergic drugs for the treatment of overactive bladder syndrome: a meta-analysis. Ann Palliat Med. Jun 2021; 10(6): 6287-6296. PMID 34118839
- 3. Coolen RL, Groen J, Scheepe JR, et al. Transcutaneous Electrical Nerve Stimulation and Percutaneous Tibial Nerve Stimulation to Treat Idiopathic Nonobstructive Urinary Retention: A Systematic Review. Eur Urol Focus. Sep 2021; 7(5): 1184-1194. PMID 33268327

- 4. Ho FCS, He C, Yao HH, et al. Efficacy of sacral neuromodulation and percutaneous tibial nerve stimulation in the treatment of chronic nonobstructive urinary retention: A systematic review. Neurourol Urodyn. Jun 2021; 40(5): 1078-1088. PMID 33973670
- Tutolo M, Ammirati E, Heesakkers J, et al. Efficacy and Safety of Sacral and Percutaneous Tibial Neuromodulation in Non-neurogenic Lower Urinary Tract Dysfunction and Chronic Pelvic Pain: A Systematic Review of the Literature. Eur Urol. Mar 2018; 73(3): 406-418. PMID 29336927
- 6. Tutolo M, Ammirati E, Van der Aa F. What Is New in Neuromodulation for Overactive Bladder?. Eur Urol Focus. Jan 2018; 4(1): 49-53. PMID 29773501
- Stewart F, Gameiro LF, El Dib R, et al. Electrical stimulation with non-implanted electrodes for overactive bladder in adults. Cochrane Database Syst Rev. Dec 09 2016; 12: CD010098. PMID 27935011
- 8. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Percutaneous tibial nerve stimulation for the treatment of voiding dysfunction. TEC Assessments. 2013;Volume 28:Tab 10. PMID
- Burton C, Sajja A, Latthe PM. Effectiveness of percutaneous posterior tibial nerve stimulation for overactive bladder: a systematic review and meta-analysis. Neurourol Urodyn. Nov 2012; 31(8): 1206-16. PMID 22581511
- Levin PJ, Wu JM, Kawasaki A, et al. The efficacy of posterior tibial nerve stimulation for the treatment of overactive bladder in women: a systematic review. Int Urogynecol J. Nov 2012; 23(11): 1591-7. PMID 22411208
- 11. Moossdorff-Steinhauser HF, Berghmans B. Effects of percutaneous tibial nerve stimulation on adult patients with overactive bladder syndrome: a systematic review. Neurourol Urodyn. Mar 2013; 32(3): 206-14. PMID 22907807
- 12. Gaziev G, Topazio L, Iacovelli V, et al. Percutaneous Tibial Nerve Stimulation (PTNS) efficacy in the treatment of lower urinary tract dysfunctions: a systematic review. BMC Urol. Nov 25 2013; 13: 61. PMID 24274173
- 13. Shamliyan T, Wyman J, Kane RL. Nonsurgical Treatments for Urinary Incontinence in Adult Women: Diagnosis and Comparative Effectiveness (Comparative Effectiveness Review No. 36). Rockville, MD: Agency for Healthcare Research and Quality; 2012.
- 14. Finazzi-Agro E, Petta F, Sciobica F, et al. Percutaneous tibial nerve stimulation effects on detrusor overactivity incontinence are not due to a placebo effect: a randomized, double-blind, placebo controlled trial. J Urol. Nov 2010; 184(5): 2001-6. PMID 20850833
- 15. Peters KM, Carrico DJ, Perez-Marrero RA, et al. Randomized trial of percutaneous tibial nerve stimulation versus Sham efficacy in the treatment of overactive bladder syndrome: results from the SUmiT trial. J Urol. Apr 2010; 183(4): 1438-43. PMID 20171677
- 16. Peters K, Carrico D, Burks F. Validation of a sham for percutaneous tibial nerve stimulation (PTNS). Neurourol Urodyn. 2009; 28(1): 58-61. PMID 18671297
- 17. Peters KM, Carrico DJ, Wooldridge LS, et al. Percutaneous tibial nerve stimulation for the long-term treatment of overactive bladder: 3-year results of the STEP study. J Urol. Jun 2013; 189(6): 2194-201. PMID 23219541
- 18. Vecchioli-Scaldazza C, Morosetti C. Effectiveness and durability of solifenacin versus percutaneous tibial nerve stimulation versus their combination for the treatment of women with overactive bladder syndrome: a randomized controlled study with a follow-up of ten months. Int Braz J Urol. Jan-Feb 2018; 44(1): 102-108. PMID 29064651
- 19. Boudaoud N, Binet A, Line A, et al. Management of refractory overactive bladder in children by transcutaneous posterior tibial nerve stimulation: A controlled study. J Pediatr Urol. Jun 2015; 11(3): 138.e1-10. PMID 25979217
- 20. Gungor Ugurlucan F, Onal M, Aslan E, et al. Comparison of the effects of electrical stimulation and posterior tibial nerve stimulation in the treatment of overactive bladder syndrome. Gynecol Obstet Invest. 2013; 75(1): 46-52. PMID 23171636
- 21. Preyer O, Umek W, Laml T, et al. Percutaneous tibial nerve stimulation versus tolterodine for overactive bladder in women: a randomised controlled trial. Eur J Obstet Gynecol Reprod Biol. Aug 2015; 191: 51-6. PMID 26073262
- 22. Vecchioli-Scaldazza C, Morosetti C, Berouz A, et al. Solifenacin succinate versus percutaneous tibial nerve stimulation in women with overactive bladder syndrome: results of a randomized controlled crossover study. Gynecol Obstet Invest. 2013; 75(4): 230-4. PMID 23548260

- 23. Schreiner L, dos Santos TG, Knorst MR, et al. Randomized trial of transcutaneous tibial nerve stimulation to treat urge urinary incontinence in older women. Int Urogynecol J. Sep 2010; 21(9): 1065-70. PMID 20458465
- 24. Peters KM, Macdiarmid SA, Wooldridge LS, et al. Randomized trial of percutaneous tibial nerve stimulation versus extended-release tolterodine: results from the overactive bladder innovative therapy trial. J Urol. Sep 2009; 182(3): 1055-61. PMID 19616802
- 25. MacDiarmid SA, Peters KM, Shobeiri SA, et al. Long-term durability of percutaneous tibial nerve stimulation for the treatment of overactive bladder. J Urol. Jan 2010; 183(1): 234-40. PMID 19913821
- 26. Rogers A, Bragg S, Ferrante K, et al. Pivotal Study of Leadless Tibial Nerve Stimulation with eCoin® for Urgency Urinary Incontinence: An Open-Label, Single Arm Trial. J Urol. Aug 2021; 206(2): 399-408. PMID 33797291
- 27. U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data (SSED): eCoin Peripheral Neurostimulator System (P200036). March 1, 2022; https://www.accessdata.fda.gov/cdrh_docs/pdf20/P200036B.pdf. Accessed June 28, 2023.
- 28. MacDiarmid S, Staskin DR, Lucente V, et al. Feasibility of a Fully Implanted, Nickel Sized and Shaped Tibial Nerve Stimulator for the Treatment of Overactive Bladder Syndrome with Urgency Urinary Incontinence. J Urol. May 2019; 201(5): 967-972. PMID 31009968
- 29. Gilling P, Meffan P, Kaaki B, et al. Twelve-month Durability of a Fully-implanted, Nickel-sized and Shaped Tibial Nerve Stimulator for the Treatment of Overactive Bladder Syndrome with Urgency Urinary Incontinence: A Single-Arm, Prospective Study. Urology. Nov 2021; 157: 71-78. PMID 34048826
- 30. Kaaki B, English S, Gilling P, et al. Six-Month Outcomes of Reimplantation of a Coin-Sized Tibial Nerve Stimulator for the Treatment of Overactive Bladder Syndrome With Urgency Urinary Incontinence. Female Pelvic Med Reconstr Surg. May 01 2022; 28(5): 287-292. PMID 35536667
- 31. Schneider MP, Gross T, Bachmann LM, et al. Tibial Nerve Stimulation for Treating Neurogenic Lower Urinary Tract Dysfunction: A Systematic Review. Eur Urol. Nov 2015; 68(5): 859-67. PMID 26194043
- 32. Monteiro ES, de Carvalho LB, Fukujima MM, et al. Electrical stimulation of the posterior tibialis nerve improves symptoms of poststroke neurogenic overactive bladder in men: a randomized controlled trial. Urology. Sep 2014; 84(3): 509-14. PMID 25168524
- 33. Perissinotto MC, D'Ancona CA, Lucio A, et al. Transcutaneous tibial nerve stimulation in the treatment of lower urinary tract symptoms and its impact on health-related quality of life in patients with Parkinson disease: a randomized controlled trial. J Wound Ostomy Continence Nurs. Jan-Feb 2015; 42(1): 94-9. PMID 25549314
- 34. Gaspard L, Tombal B, Opsomer RJ, et al. [Physiotherapy and neurogenic lower urinary tract dysfunction in multiple sclerosis patients: a randomized controlled trial]. Prog Urol. Sep 2014; 24(11): 697-707. PMID 25214451
- 35. Eftekhar T, Teimoory N, Miri E, et al. Posterior tibial nerve stimulation for treating neurologic bladder in women: a randomized clinical trial. Acta Med Iran. 2014; 52(11): 816-21. PMID 25415813
- 36. Zonić-Imamović M, Imamović S, Čičkušić A, et al. Effects of Treating an Overactive Urinary Bladder in Patients with Multiple Sclerosis. Acta Med Acad. Dec 2019; 48(3): 271-277. PMID 32124625
- 37. Welk B, McKibbon M. A randomized, controlled trial of transcutaneous tibial nerve stimulation to treat overactive bladder and neurogenic bladder patients. Can Urol Assoc J. Jul 2020; 14(7): E297-E303. PMID 32017693
- 38. Sarveazad A, Babahajian A, Amini N, et al. Posterior Tibial Nerve Stimulation in Fecal Incontinence: A Systematic Review and Meta-Analysis. Basic Clin Neurosci. 2019; 10(5): 419-431. PMID 32284831
- 39. Tan K, Wells CI, Dinning P, et al. Placebo Response Rates in Electrical Nerve Stimulation Trials for Fecal Incontinence and Constipation: A Systematic Review and Meta-Analysis. Neuromodulation. Dec 2020; 23(8): 1108-1116. PMID 31889364
- Simillis C, Lal N, Qiu S, et al. Sacral nerve stimulation versus percutaneous tibial nerve stimulation for faecal incontinence: a systematic review and meta-analysis. Int J Colorectal Dis. May 2018; 33(5): 645-648. PMID 29470730
- 41. Edenfield AL, Amundsen CL, Wu JM, et al. Posterior tibial nerve stimulation for the treatment of fecal incontinence: a systematic evidence review. Obstet Gynecol Surv. May 2015; 70(5): 329-41. PMID 25974730
- 42. Horrocks EJ, Thin N, Thaha MA, et al. Systematic review of tibial nerve stimulation to treat faecal incontinence. Br J Surg. Apr 2014; 101(5): 457-68. PMID 24446127

- 43. George AT, Kalmar K, Sala S, et al. Randomized controlled trial of percutaneous versus transcutaneous posterior tibial nerve stimulation in faecal incontinence. Br J Surg. Feb 2013; 100(3): 330-8. PMID 23300071
- 44. Knowles CH, Horrocks EJ, Bremner SA, et al. Percutaneous tibial nerve stimulation versus sham electrical stimulation for the treatment of faecal incontinence in adults (CONFIDeNT): a double-blind, multicentre, pragmatic, parallel-group, randomised controlled trial. Lancet. Oct 24 2015; 386(10004): 1640-8. PMID 26293315
- 45. Horrocks EJ, Chadi SA, Stevens NJ, et al. Factors Associated With Efficacy of Percutaneous Tibial Nerve Stimulation for Fecal Incontinence, Based on Post-Hoc Analysis of Data From a Randomized Trial. Clin Gastroenterol Hepatol. Dec 2017; 15(12): 1915-1921.e2. PMID 28647458
- 46. Thin NN, Taylor SJ, Bremner SA, et al. Randomized clinical trial of sacral versus percutaneous tibial nerve stimulation in patients with faecal incontinence. Br J Surg. Mar 2015; 102(4): 349-58. PMID 25644291
- 47. Leo CA, Thomas GP, Hodgkinson JD, et al. Randomized Pilot Study: Anal Inserts Versus Percutaneous Tibial Nerve Stimulation in Patients With Fecal Incontinence. Dis Colon Rectum. Apr 01 2021; 64(4): 466-474. PMID 33399411
- 48. Zyczynski HM, Richter HE, Sung VW, et al. Percutaneous Tibial Nerve Stimulation vs Sham Stimulation for Fecal Incontinence in Women: NeurOmodulaTion for Accidental Bowel Leakage Randomized Clinical Trial. Am J Gastroenterol. Apr 01 2022; 117(4): 654-667. PMID 35354778
- 49. Sanagapalli S, Neilan L, Lo JYT, et al. Efficacy of Percutaneous Posterior Tibial Nerve Stimulation for the Management of Fecal Incontinence in Multiple Sclerosis: A Pilot Study. Neuromodulation. Oct 2018; 21(7): 682-687. PMID 29575432
- 50. Lightner DJ, Gomelsky A, Souter L, et al. Diagnosis and Treatment of Overactive Bladder (Non-Neurogenic) in Adults: AUA/SUFU Guideline Amendment 2019. J Urol. Sep 2019; 202(3): 558-563. PMID 31039103
- 51. ACOG Practice Bulletin No. 155: Urinary Incontinence in Women. Obstet Gynecol. Nov 2015; 126(5): e66-e81. PMID 26488524
- 52. Bharucha AE, Rao SSC, Shin AS. Surgical Interventions and the Use of Device-Aided Therapy for the Treatment of Fecal Incontinence and Defecatory Disorders. Clin Gastroenterol Hepatol. Dec 2017; 15(12): 1844-1854. PMID 28838787