Medical Policy

Measurement of Lipoprotein-Associated Phospholipase A2 in the Assessment of Cardiovascular Risk

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 558
BCBSA Reference Number: 2.04.32 (For Plan internal use only)

Related Policies
Novel Lipid Risk Factors in Risk Assessment and Management of Cardiovascular Disease #283

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Measurement of lipoprotein-associated phospholipase A2 is considered INVESTIGATIONAL.

Prior Authorization Information
Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th></th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes
<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83698</td>
<td>Lipoprotein-associated phospholipase A2 (Lp-PLA2)</td>
</tr>
</tbody>
</table>

Description

Low-Density Lipoproteins

Low-density lipoproteins (LDLs) have been identified as major atherogenic lipoproteins and have long been identified by the National Cholesterol Education Project as the primary target of cholesterol-lowering therapy. LDL particles consist of a surface coat composed of phospholipids, free cholesterol, and apolipoproteins surrounding an inner lipid core composed of cholesterol ester and triglycerides. Traditional lipid risk factors such as low-density lipoprotein cholesterol, while predictive on a population basis, are weaker markers of risk on an individual basis. Only a minority of subjects with elevated LDL and cholesterol levels will develop clinical disease, and up to 50% of cases of coronary artery disease (CAD) occur in subjects with “normal” levels of total and low-density lipoprotein cholesterol.

Treatment

Although treatment for elevated coronary disease risk with statins targets cholesterol levels, selection for treatment involves estimation of future CAD risk using well-validated prediction models that use additional variables.

Lipoprotein-associated phospholipase A₂ (Lp-PLA₂), also known as platelet-activating factor acetylhydrolase, is an enzyme that hydrolyzes phospholipids and is primarily associated with LDLs. Accumulating evidence has suggested that Lp-PLA₂ is a biomarker of CAD and may have a proinflammatory role in the progression of atherosclerosis. Recognition that atherosclerosis represents, in part, an inflammatory process has created considerable interest in the measurement of pro-inflammatory factors as part of cardiovascular disease risk assessment.

Interest in Lp-PLA₂ as a possible causal risk factor for CAD has generated the development and testing of Lp-PLA₂ inhibitors as a new class of drugs to reduce the risk of CAD. However, clinical trials of Lp-PLA₂ inhibitors have not shown significant reductions in CAD endpoints.¹,²,³ Furthermore, assessment of Lp-PLA₂ levels has not been used in the selection or management of subjects in the clinical trials.

Summary

Lipoprotein-associated phospholipase A₂ (Lp-PLA₂), also known as platelet-activating factor acetylhydrolase, is an enzyme that hydrolyzes phospholipids and is primarily associated with low-density lipoproteins. Accumulating evidence has suggested that Lp-PLA₂ is a biomarker of coronary artery disease and may have a proinflammatory role in the progression of atherosclerosis.

Summary of Evidence

For individuals who have a risk of CVD who receive Lp-PLA₂ testing, the evidence includes studies of the association between Lp-PLA₂ and various CAD outcomes. Relevant outcomes are overall survival, disease-specific survival, and test validity. The studies have demonstrated that Lp-PLA₂ levels are an independent predictor of CVD. Although Lp-PLA₂ levels are associated with CVD risk, changes in patient management that would occur as a result of obtaining Lp-PLA₂ levels in practice are not well-defined. To demonstrate clinical utility, clinicians must have the tools to incorporate Lp-PLA₂ test results into existing risk prediction models that improve classification into risk categories, alter treatment decisions, and lead to improved health outcomes. Direct evidence for such improved health outcomes with Lp-PLA₂ testing in clinical practice is lacking. The evidence is insufficient to determine that the technology results in an improvement in the net health outcomes.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2023</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2023</td>
<td>Medicare information removed. See MP #132 Medicare Advantage Management for local coverage determination and national coverage determination reference.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:

- Medical Policy Terms of Use
- Managed Care Guidelines
- Indemnity/PPO Guidelines
- Clinical Exception Process
- Medical Technology Assessment Guidelines

References

