Medical Policy
Actigraphy

Table of Contents
- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 533
BCBSA Reference Number: 2.01.73 (For Plan internal use only)

Related Policies
Surgical Treatment of Snoring and Obstructive Sleep Apnea Syndrome, #130

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Actigraphy as a technique to record and analyze body movement, including but not limited to its use to evaluate sleep disorders, is INVESTIGATIONAL.

Prior Authorization Information
Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th></th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes
Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

CPT Codes
CPT codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95803</td>
<td>Actigraphy testing, recording, analysis, interpretation and report (minimum of 72 hours to 14 consecutive days of recording)</td>
</tr>
</tbody>
</table>

ICD Diagnosis Codes

Investigational for all diagnoses.

Description

Sleep Disorders

Sleep disorders affect a large percentage of the U.S. population. For example, estimates suggest that 15% to 24% of the U.S. population suffers from insomnia. Lack of sleep also contributes to reduced cognitive functioning, susceptibility to heart disease, and workplace absenteeism.

Diagnosis

Actigraphy refers to the assessment of activity patterns (body movement) using devices, typically placed on the wrist or ankle, which are interpreted by computer algorithms as periods of sleep (absence of activity) and wake (activity). Actigraphy devices are usually placed on the nondominant wrist with a wristband and are worn continuously for at least 24 hours. Activity is usually recorded for a period of 3 days to 2 weeks but can be collected continuously over extended periods with regular downloading of data onto a computer. The activity monitors may also be placed on the ankle to assess restless legs syndrome or on the trunk to record movement in infants.

The algorithms for detecting movement vary across devices and may include “time above threshold,” the "zero crossing method" (the number of times per epoch that activity level crosses zero), or the "digital integration" method, resulting in different sensitivities. Sensitivity settings (eg, low, medium, high, automatic) can also be adjusted during data analysis. The most commonly used method (digital integration) reflects both acceleration and amplitude of movement.

Data on patient bedtimes (lights out) and rise times (lights on) are usually entered into the computer from daily patient sleep logs or by patient-activated event markers. Proprietary software is then used to calculate periods of sleep based on the absence of detectable movement, along with the movement-related level of activity and periods of wake. In addition to providing a graphic depiction of the activity pattern, the device-specific software can then analyze and report a variety of sleep parameters, including sleep onset, sleep offset, sleep latency, total sleep duration, and wake after sleep onset (actigraphy could also be used to measure the level of physical activity).

Actigraphy has been used for more than 2 decades as an outcome measure in sleep disorders research. For clinical applications, actigraphy is being evaluated as a measure of sleep-wake cycles in sleep disorders, including insomnia and circadian rhythm sleep disorders. Also, actigraphy is being investigated as a measure of sleep-wake disturbances associated with other diseases and disorders.

Summary

Actigraphy refers to the assessment of body movement activity patterns using devices, typically placed on the wrist or ankle, during sleep, which are interpreted by computer algorithms as periods of sleep and wake. Sleep-wake cycles may be altered in sleep disorders, including insomnia and circadian rhythm sleep disorders. Also, actigraphy could be used to assess sleep/wake disturbances associated with other disorders.

For individuals who have circadian sleep-wake rhythm disorders who receive actigraphy, the evidence includes a comparative study that selected subjects from another main study evaluating the effects of caffeine on daytime recovery sleep. Relevant outcomes are test accuracy and test validity. Comparison with polysomnography (PSG) has shown that actigraphy is limited in differentiating between sleep and wake in more disturbed sleep. Actigraphy appears to reliably measure sleep onset and total sleep time in
some patient populations. Comparisons with PSG and sleep diaries are limited. Evidence has shown that actigraphy does not provide a reliable measure of sleep efficiency in this patient population. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For children and adolescents with sleep-associated disorders who receive actigraphy, the evidence includes prospective and retrospective validation studies. Relevant outcomes are test accuracy and validity. Comparisons with PSG have shown that actigraphy can differ significantly in its estimations of wake and sleep times and sleep onset latency. Comparisons with sleep diaries have also failed to show satisfactory agreement, with greater discrepancies for more disturbed sleep. Evidence has shown that actigraphy does not provide a reliable measure of sleep efficiency in this patient population. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have central disorders of hypersomnolence who receive actigraphy, the evidence includes a comparative observational study. Relevant outcomes are test accuracy and validity. Comparison with video-PSG has indicated that actigraphy has a sensitivity of 26.1% and specificity of 95.5%. General evidence has also revealed that the accuracy of actigraphy for differentiating between wake and sleep decreases as the level of sleep disturbance increases. Although actigraphy appears to provide reliable measures of sleep onset and wake time in some patient populations, its clinical utility compared with that of sleep diaries has not been demonstrated. Evidence has shown that actigraphy does not provide a reliable measure of sleep efficiency in this patient population. The complexity of the various syndromes as well as the potential for medical treatment with significant adverse events makes accurate diagnosis essential. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have insomnia who receive actigraphy, the evidence includes prospective and retrospective validation studies. Relevant outcomes are test accuracy and validity. Comparisons with PSG have shown that actigraphy has a poor agreement for reporting wake time and can overestimate sleep efficiency. Comparison with sleep diaries has indicated that actigraphy is less effective at differentiating between patients with insomnia and controls. General evidence has also revealed that the accuracy of actigraphy for differentiating between wake and sleep decreases as the level of sleep disturbance increases. Although actigraphy appears to provide reliable measures of sleep onset and wake time in some patient populations, its clinical utility compared with sleep diaries has not been demonstrated. Evidence has shown that actigraphy does not provide a reliable measure of sleep efficiency in this patient population. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/2023</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2023</td>
<td>Medicare information removed. See MP #132 Medicare Advantage Management for local coverage determination and national coverage determination reference.</td>
</tr>
<tr>
<td>8/2022</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>12/2020</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>8/2019</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2017</td>
<td>Annual policy review. New references added.</td>
</tr>
<tr>
<td>4/2013</td>
<td>Annual policy review. New references added.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References