

Blue Cross Blue Shield of Massachusetts is an Independent Licenses of the Blue Cross and Blue Shield Association

# **Medical Policy**

# Scintimammography and Gamma Imaging of the Breast and Axilla

# **Table of Contents**

• Policy: Commercial

Coding Information

Information Pertaining to All Policies

Policy: Medicare

Description

References

Authorization Information

Policy History

**Policy Number: 494** 

BCBSA Reference Number: 6.01.18 (For Plan internal use only)

NCD/LCD: N/A

# **Related Policies**

None

# **Policy**

# Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO Blue<sup>SM</sup> and Medicare PPO Blue<sup>SM</sup> Members

Scintimammography, breast-specific gamma imaging (BSGI), and molecular breast imaging (MBI) are <a href="INVESTIGATIONAL">INVESTIGATIONAL</a> in all applications, including, but not limited to their use as an adjunct to mammography or in staging the axillary lymph nodes.

Use of radiopharmaceutical administration and gamma detection (lymphoscintigraphy) for localization of sentinel lymph nodes in individuals with breast cancer may be considered **MEDICALLY NECESSARY**.

## **Prior Authorization Information**

#### Inpatient

 For services described in this policy, precertification/preauthorization <u>IS REQUIRED</u> for all products if the procedure is performed **inpatient**.

#### Outpatient

• For services described in this policy, see below for products where prior authorization <u>might be</u> <u>required</u> if the procedure is performed <u>outpatient</u>.

|                                       | Outpatient                                   |
|---------------------------------------|----------------------------------------------|
| Commercial Managed Care (HMO and POS) | Prior authorization is <b>not required</b> . |
| Commercial PPO and Indemnity          | Prior authorization is <b>not required</b> . |
| Medicare HMO Blue <sup>SM</sup>       | Prior authorization is <b>not required</b> . |
| Medicare PPO Blue <sup>SM</sup>       | Prior authorization is <b>not required</b> . |

# **CPT Codes / HCPCS Codes / ICD Codes**

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above <u>medical necessity criteria MUST</u> be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

#### **CPT Codes**

| CPT codes: | Code Description                                                                                                                                                                                                                                                                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 78800      | Radiopharmaceutical localization of tumor, inflammatory process or distribution of radiopharmaceutical agent(s) (includes vascular flow and blood pool imaging, when performed); planar, single area (eg, head, neck, chest, pelvis), single day imaging                                                             |
| 78801      | Radiopharmaceutical localization of tumor, inflammatory process or distribution of radiopharmaceutical agent(s) (includes vascular flow and blood pool imaging, when performed); planar, 2 or more areas (eg, abdomen and pelvis, head and chest), 1 or more days imaging or single area imaging over 2 or more days |

#### **HCPCS Codes**

| HCPCS  |                                                         |
|--------|---------------------------------------------------------|
| codes: | Code Description                                        |
| A9500  | Technetium tc-99m sestamibi, diagnostic, per study dose |

The following HCPCS code is considered investigational for <u>Commercial Members: Managed Care</u> (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

#### **HCPCS Codes**

| HCPCS codes: | Code Description                                                                                               |
|--------------|----------------------------------------------------------------------------------------------------------------|
| S8080        | Scintimammography (radioimmunoscintigraphy of the breast), unilateral, including supply of radiopharmaceutical |

## **DESCRIPTION**

#### **Mammography**

Mammography is the main screening modality for breast cancer, despite its limitations in terms of less than ideal sensitivity and specificity. Limitations of mammography are a particular issue for women at high-risk of breast cancer, for whom cancer risk exceeds the inconvenience of more frequent screening, starting at a younger age, with more frequent false-positive results. Furthermore, the sensitivity of mammography is lower in women with radiographically dense breasts, which is more common among younger women. The clinical utility of adjunctive screening tests is primarily in the evaluation of women with inconclusive results on mammography. A biopsy is generally performed on a breast lesion if imaging cannot rule out malignancy with certainty. Therefore, adjunctive tests will be most useful in women with inconclusive mammograms if they have a high negative predictive value and can preclude the need for biopsy. Additional imaging for asymptomatic women who have dense breasts and negative mammograms has been suggested, but the best approach is subject to debate. 1.

#### **Scintimammography**

Scintimammography is a diagnostic modality using radiopharmaceuticals to detect breast tumors. After intravenous injection of a radiopharmaceutical, the breast is evaluated using planar imaging. Scintimammography is performed with the patient lying prone, and the camera positioned laterally, which increases the distance between the breast and the camera. Special camera positioning to include the axilla may be included when the area of interest is an evaluation for axillary metastases. Scintimammography using conventional imaging modalities has relatively poor sensitivity in detecting smaller lesions (eg, <15 mm), because of the relatively poor resolution of conventional gamma cameras in imaging the breast.

## **Breast-Specific Gamma Imaging**

Breast-specific gamma imaging (BSGI) and molecular breast imaging (MBI) were developed to address the poor resolution of conventional gamma cameras. Breast-specific gamma cameras acquire images while the patient is seated in a position similar to that in mammography and the breast is lightly compressed. Detector heads are immediately next to the breast, increasing resolution, and images can be compared with mammographic images. Breast-specific gamma imaging and MBI differ primarily in the number and type of detectors used (eg, multicrystal arrays of cesium iodide or sodium iodide, or nonscintillating, semiconductor materials, such as cadmium zinc telluride). In some configurations, a detector is placed on each side of the breast and used to compress it lightly. The maximum distance between the detector and the breast is therefore from the surface to the midpoint of the breast. The radiotracer typically used is technetium 99m (Tc 99m) sestamibi, and MBI takes approximately 40 minutes.<sup>2</sup>

## **Lymphoscintigraphy and Hand-Held Gamma Detection**

Preoperative lymphoscintigraphy and/or intraoperative hand-held gamma detection of sentinel lymph nodes (SLNs) is a method of identifying SLNs for a biopsy after radiotracer injection. Surgical removal of 1 or more SLNs is an alternative to full axillary lymph node dissection for staging evaluation and management of breast cancer. Several trials have compared outcomes following SLN biopsy with axillary lymph node dissection for managing patients who have breast cancer. The National Surgical Adjuvant Breast and Bowel Project trial B-32 examined whether SLN dissection provides similar survival and regional control as full axillary lymph node dissection in the surgical staging and management of patients with clinically invasive breast cancer. This multicenter randomized controlled trial (RCT) included 5611 women and observed statistically similar results for overall survival, disease-free survival, and regional control based on 8-year Kaplan-Meier estimates.3 An additional 3-year follow-up of morbidity after surgical node dissection revealed lower morbidity in the SLN dissection group, including lower rates of arm swelling, numbness, tingling, and fewer early shoulder abduction deficits. 4 A recent systematic review and meta-analysis by Ram et al (2014) reported no significant difference in overall survival (hazard ratio, 0.94; 95% confidence interval, 0.79 to1.19), no significant difference in disease-free survival (hazard ratio, 0.83; 95% confidence interval, 0.60 to 1.14), and similar rates of locoregional recurrence. 5. However, axillary node dissection was associated with significantly greater surgical morbidity (eg, wound infection, arm swelling, motor neuropathy, numbness) than sentinel node biopsy.

#### Radiopharmaceuticals

## Scintimammography, Breast-Specific Gamma Imaging, and Molecular Breast Imaging

The primary radiopharmaceutical used with BSGI or MBI is Tc 99m sestamibi. The product label states that Tc 99m sestamibi is "indicated for planar imaging as a second-line diagnostic drug after mammography to assist in the evaluation of breast lesions in patients with an abnormal mammogram or a palpable breast mass. Technetium Tc-99m sestamibi is not indicated for breast cancer screening, to confirm the presence or absence of malignancy, and it is not an alternative to biopsy." 6.

Technetium TC-99m tetrofosmin (Myoview™), a gamma-emitter used in some BSGI studies, <sup>7.8.</sup> is approved by the U.S. Food and Drug Administration (FDA) only for cardiac imaging. <sup>9.</sup>

## Lymphoscintigraphy and/or Hand-Held Gamma Detection

The primary radiopharmaceuticals used for lymphoscintigraphy include Tc 99m pertechnetate-labeled colloids and Tc 99m tilmanocept (Lymphoseek®). 10. Whereas, Tc 99m sulfur colloid may frequently be used for intraoperative injection and detection of SLNs using a hand-held gamma detection probe.

# **Radiation Exposure**

## Scintimammography, Breast-Specific Gamma Imaging, and Molecular Breast Imaging

The radiation dose associated with BSGI is substantial for diagnostic breast imaging modalities. According to Appropriateness Criteria from the American College of Radiology, the radiation dose from BSGI is 10 to 30 mSv, which is 15 to 30 times higher than the dose from a digital mammogram. According to the American College of Radiology, at these levels, BSGI is not indicated for breast cancer screening.

According to a study by Hruska and O'Connor (2015; who reported receiving royalties from licensed technologies by an agreement with Mayo Clinic and Gamma Medica), the effective dose from a lower "off-label" administered dose of 240 to 300 MBq (6.5-8 mCi) of Tc 99m sestamibi that is made feasible with newer dual-head MBI systems, is 2.0 to 2.5 mSv. For comparison, the effective dose (ie, mean glandular dose) of digital mammography is estimated to be about 0.5 mSv. 12. However, it is important to note that the dose for MBI is given to the entire body. The authors compared this dose with the estimated annual background radiation, which varies worldwide between 2.5 mSv and 10 mSv, and asserted that the effective dose from MBI "is considered safe for use in routine screening."

Hendrick (2010) calculated mean glandular doses and lifetime attributable risks of cancer due to film mammography, digital mammography, BSGI, and positron emission mammography (PEM).<sup>13</sup>. The author, a consultant to GE Healthcare and a member of the medical advisory boards of Koning (manufacturer of dedicated breast computed tomography) and Bracco (magnetic resonance contrast agents), used group risk estimates from the Biological Effects of Ionizing Radiation VII report<sup>14</sup> to assess the risk of radiation-induced cancer and mortality from breast imaging studies. For a patient with average-sized breasts (compressed thickness during mammography of 5.3 cm per breast), estimated lifetime attributable risks of cancer at age 40 were:

- 5 per 100000 for digital mammography (breast cancer only),
- 7 per 100000 for screen-film mammography (breast cancer only),
- 55 to 82 per 100000 for BSGI (depending on the dose of Tc 99m sestamibi), and
- 75 for 100000 for PEM.

Corresponding lifetime attributable risks of cancer mortality at age 40 were:

- 1.3 per 100000 for digital mammography (breast cancer only).
- 1.7 per 100000 for screen-film mammography (breast cancer only),
- 26 to 39 per 100000 for BSGI, and
- 31 for 100000 for PEM.

A major difference in the impact of radiation between mammography and BSGI or PEM is that, for mammography, the substantial radiation dose is limited to the breast. With BSGI and PEM, all organs are irradiated, increasing the risks associated with radiation exposure.

Although the use of BSGI (or MBI) has been proposed for women at high-risk of breast cancer, there is controversy and speculation over whether some women (eg, those with *BRCA* variants) have a heightened radiosensitivity. 

15,16 If women with *BRCA* variants are more radiosensitive than the general population, studies may underestimate the risks of breast imaging with ionizing radiation (ie, mammography, BSGI, MBI, positron emission mammography, single-photon emission computed tomography/computed tomography, breast-specific computed tomography, tomosynthesis) in these women. In contrast, ultrasonography and magnetic resonance imaging (MRI) do not use radiation. More research is needed to resolve this issue. Also, the risk associated with radiation exposure will be greater for women at high-risk of breast cancer, whether or not they are more radiosensitive because they start screening at a younger age when the risks associated with radiation exposure are greater. In addition, a large, high-quality, head-to-head comparison of BSGI (or MBI) and MRI would be needed, especially for women at high-risk of breast cancer, because MRI, alternated with mammography, is currently the recommended screening technique.

Notes: The term *molecular breast imaging* is used in different ways, sometimes for any type of breast imaging involving molecular imaging, including PEM, and sometimes it is used synonymously with the term *breast-specific gamma camera*, as used in this review.

Use of single-photon emission computed tomography and positron emission tomography of the breast are not addressed in this review.

# **Summary**

# Description

Scintimammography, breast-specific gamma imaging (BSGI), and molecular breast imaging (MBI) use radiotracers with nuclear medicine imaging as a diagnostic tool for abnormalities of the breast. These tests are distinguished by the use of differing gamma camera technology, which may improve diagnostic performance for detecting small lesions. Breast-specific gamma imaging uses a single-head breast-specific gamma camera and a compression device; whereas MBI uses dual-head breast-specific gamma cameras that also produce breast compression. Preoperative lymphoscintigraphy and/or intraoperative hand-held gamma detection of sentinel lymph nodes is a method of identifying sentinel lymph nodes for a biopsy after radiotracer injection. Surgical removal of 1 or more sentinel lymph nodes is an alternative to full axillary lymph node dissection for staging, evaluation, and management of breast cancer.

#### **Summary of Evidence**

Scintimammography, Breast-Specific Gamma Imaging, and Molecular Breast Imaging for Diagnosis For individuals who have dense breasts or high-risk for breast cancer who receive scintimammography, BSGI, or MBI as an adjunct to mammography, the evidence includes diagnostic accuracy studies. Relevant outcomes are overall survival (OS), disease-specific survival, test validity, and treatment-related morbidity. Three prospective studies have assessed the incremental difference in diagnostic accuracy when BSGI or MBI is added to mammography in women at increased risk. Sensitivity was higher with combined BSGI or MBI and mammography, but specificity was lower. A retrospective study found improved diagnostic accuracy and specificity with BSGI compared to ultrasonography when added to mammography. Studies of women at increased risk of breast cancer and negative mammograms found that a small number of additional cancers were detected. Studies tended to include women at different risk levels (eg, women with dense breasts and those with BRCA1). Moreover, any potential benefits need to be weighed against the potential risks of additional radiation exposure. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have indeterminate or suspicious breast lesions who receive scintimammography, BSGI, or MBI, the evidence includes diagnostic accuracy studies. Relevant outcomes are OS, disease-specific survival, test validity, and treatment-related morbidity. In the available studies, compared with biopsy, the negative predictive value of BSGI (or MBI) varied from 83% to 94%. Given the relative ease and diagnostic accuracy of the criterion standard of biopsy, coupled with the adverse consequences of missing a breast cancer, the negative predictive value of BSGI (or MBI) would have to be extremely high to alter treatment decisions. The evidence to date does not demonstrate this level of negative predictive value. Moreover, the value of BSGI in evaluating indeterminate or suspicious lesions must be compared with other modalities that would be used, such as spot views for diagnostic mammography. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have breast cancer undergoing detection of residual tumor after neoadjuvant therapy who receive scintimammography and BSGI, the evidence includes diagnostic accuracy studies and a meta-analysis. Relevant outcomes are OS, disease-specific survival, test validity, and treatment-related morbidity. The meta-analysis of studies evaluating the accuracy of BSGI for detecting residual tumor after neoadjuvant therapy found a pooled sensitivity of 86% and a pooled specificity of 69%, compared with histopathologic analysis. No studies were identified that compared the diagnostic accuracy of BSGI with other imaging approaches, or that investigated the clinical utility of this potential application of BSGI. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have breast cancer undergoing surgical planning for breast-conserving therapy who receive scintimammography and BSGI for disease detection, the evidence includes a retrospective observational study. Relevant outcomes are OS, disease-specific survival, test validity, and treatment-related morbidity. In the retrospective study, results suggested that magnetic resonance imaging identified more patients than BSGI who were not appropriate candidates for breast-conserving therapy. Prospective

comparative studies are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

# Scintimammography and Breast-Specific Gamma Imaging for Treatment

For individuals who have breast cancer undergoing detection of axillary metastases who receive scintimammography and BSGI, the evidence includes diagnostic accuracy studies and systematic reviews of diagnostic accuracy studies. Relevant outcomes are OS, disease-specific survival, test validity, and treatment-related morbidity. A meta-analysis of the available diagnostic accuracy studies found that the sensitivity and specificity of BSGI are not high enough for this technology to replace the current standard practice, surgical nodal dissection. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

#### Radiopharmaceutical and Gamma Detection for Treatment

For individuals who have breast cancer undergoing sentinel lymph node (SLN) biopsy for detection of axillary metastases who receive radiopharmaceutical and gamma detection (lymphoscintigraphy) for localization of SLNs, the evidence includes a randomized controlled trial, nonrandomized studies, and systematic reviews. Relevant outcomes are OS, disease-specific survival, test validity, and treatment-related morbidity. Evidence indicates that using radiopharmaceutical and gamma detection for localization of SLNs yields high success rates in identifying SLNs. Additionally, the diagnostic performance generally offers better detection rates with radiopharmaceuticals than with the blue dye method and similar detection rates to indocyanine green fluorescence. The evidence has indicated that SLN biopsy provides similar long-term outcomes as full axillary lymph node dissection for control of breast cancer and offers more favorable early results with reduced arm swelling and better quality of life. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

# **Policy History**

| Date     | Action                                                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11/2024  | Annual policy review. Policy updated with literature review through July 19, 2024; no references added. Medically necessary policy statement edited to more accurately |
|          | reflect the intervention reviewed; intent otherwise unchanged.                                                                                                         |
| 11/2023  | Annual policy review. Description, summary, and references updated. Policy statements unchanged.                                                                       |
| 11/2022  | Annual policy review. No references added. Policy statements unchanged.                                                                                                |
| 10/2021  | Annual policy review. Policy statements unchanged.                                                                                                                     |
| 11/2020  | Annual policy review. Description, summary, and references updated. Policy statements unchanged.                                                                       |
| 1/2020   | Clarified coding information.                                                                                                                                          |
| 10/2019  | Annual policy review. Description, summary, and references updated. Policy statements unchanged.                                                                       |
| 10/2018  | Annual policy review. Description, summary, and references updated. Policy statements unchanged.                                                                       |
| 10/2017  | Annual policy review. New references added.                                                                                                                            |
| 2/2017   | Annual policy review. New medically necessary indications described. Clarified coding information. Effective 2/1/2017.                                                 |
| 7/2015   | Annual policy review. New references added.                                                                                                                            |
| 11/2014  | Annual policy review. New investigational indications described. Coding information clarified. Effective 10/1/2014.                                                    |
| 7/2014   | Updated Coding section with ICD10 procedure and diagnosis codes. Effective 10/2015.                                                                                    |
| 11/2011- | Medical policy ICD 10 remediation: Formatting, editing and coding updates.                                                                                             |
| 4/2012   | No changes to policy statements.                                                                                                                                       |
| 9/2011   | Reviewed - Medical Policy Group - Urology and Obstetrics/Gynecology. No changes to policy statements.                                                                  |
| 7/2011   | Reviewed - Medical Policy Group - Hematology and Oncology. No changes to policy statements.                                                                            |
| 6/2011   | Annual policy review. Changes to policy statements.                                                                                                                    |

| 10/2010 | Reviewed - Medical Policy Group - Urology and Obstetrics/Gynecology. No changes to policy statements. |
|---------|-------------------------------------------------------------------------------------------------------|
| 9/2010  | Reviewed - Medical Policy Group - Hematology and Oncology. No changes to policy statements.           |
| 11/2009 | Annual policy review. No changes to policy statements.                                                |
| 9/2009  | Reviewed - Medical Policy Group - Hematology and Oncology. No changes to policy statements.           |
| 10/2008 | Reviewed - Medical Policy Group - Urology and Obstetrics/Gynecology. No changes to policy statements. |
| 10/2008 | Reviewed - Medical Policy Group - Hematology and Oncology. No changes to policy statements.           |
| 9/2008  | Annual policy review. No changes to policy statements.                                                |
| 10/2007 | Reviewed - Medical Policy Group - Urology and Obstetrics/Gynecology. No changes to policy statements. |
| 9/2007  | Reviewed - Medical Policy Group - Hematology and Oncology. No changes to policy statements.           |
| 8/2007  | Annual policy review. No changes to policy statements.                                                |

# Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use

**Managed Care Guidelines** 

Indemnity/PPO Guidelines

Clinical Exception Process

Medical Technology Assessment Guidelines

#### References

- Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Special report: screening symptomatic women with dense breasts and normal mammograms for breast cancer. TEC Assessments. 2013; Volume 28:Tab 15.
- 2. O'Connor M, Rhodes D, Hruska C. Molecular breast imaging. Expert Rev Anticancer Ther. Aug 2009; 9(8): 1073-80. PMID 19671027
- 3. Krag DN, Anderson SJ, Julian TB, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. Oct 2010; 11(10): 927-33. PMID 20863759
- Ashikaga T, Krag DN, Land SR, et al. Morbidity results from the NSABP B-32 trial comparing sentinel lymph node dissection versus axillary dissection. J Surg Oncol. Aug 01 2010; 102(2): 111-8. PMID 20648579
- Ram R, Singh J, McCaig E. Sentinel Node Biopsy Alone versus Completion Axillary Node Dissection in Node Positive Breast Cancer: Systematic Review and Meta-Analysis. Int J Breast Cancer. 2014; 2014: 513780. PMID 25383226
- 6. DailyMed. Kit for the preparation of technetium TC99M sestamibi. 2019; https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=8c03a854-185a-45d7-883f-9f87e4750181. Accessed August 7, 2024.
- 7. Hruska CB, O'Connor MK. Nuclear imaging of the breast: translating achievements in instrumentation into clinical use. Med Phys. May 2013; 40(5): 050901. PMID 23635248
- 8. Schillaci O, Spanu A, Danieli R, et al. Molecular breast imaging with gamma emitters. Q J Nucl Med Mol Imaging. Dec 2013; 57(4): 340-51. PMID 24322791
- 9. GE Healthcare. Myoview (Kit for the preparation of technetium Tc99m tetrofosmin for injection). 2017 April; https://www.gehealthcare.com/-/jssmedia/918cbfdcae184f449d731d4dcffc492f.pdf?la=en-us. August 25, 2022.
- 10. Aarsvold JN, Alazraki NP. Update on detection of sentinel lymph nodes in patients with breast cancer. Semin Nucl Med. Apr 2005; 35(2): 116-28. PMID 15765374

- American College of Radiology (ACR). Appropriateness criteria: Supplemental breast cancer screening based on breast density. 2021; https://acsearch.acr.org/docs/3158166/Narrative/. Accessed August 7, 2024.
- 12. Hruska CB, O'Connor MK. Curies, and Grays, and Sieverts, Oh My: A Guide for Discussing Radiation Dose and Risk of Molecular Breast Imaging. J Am Coll Radiol. Oct 2015; 12(10): 1103-5. PMID 26435124
- 13. Hendrick RE. Radiation doses and cancer risks from breast imaging studies. Radiology. Oct 2010; 257(1): 246-53. PMID 20736332
- 14. Health risks from exposure to low levels of ionizing radiation: BEIR VII, Phase 2. Washington, DC: National Research Council of the National Academies Press; 2006.
- Berrington de Gonzalez A, Berg CD, Visvanathan K, et al. Estimated risk of radiation-induced breast cancer from mammographic screening for young BRCA mutation carriers. J Natl Cancer Inst. Feb 04 2009; 101(3): 205-9. PMID 19176458
- 16. Ernestos B, Nikolaos P, Koulis G, et al. Increased chromosomal radiosensitivity in women carrying BRCA1/BRCA2 mutations assessed with the G2 assay. Int J Radiat Oncol Biol Phys. Mar 15 2010; 76(4): 1199-205. PMID 20206018
- 17. Food and Drug Administration (FDA). 510(k) Summary: Gamma MedicaTM Instruments: LumaGEM Scintillation Camera (K993813). 2000; https://www.accessdata.fda.gov/cdrh\_docs/pdf/K993813.pdf. Accessed August 7, 2024.
- 18. Rhodes DJ, Hruska CB, Conners AL, et al. Journal club: molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts. AJR Am J Roentgenol. Feb 2015; 204(2): 241-51. PMID 25615744
- Shermis RB, Wilson KD, Doyle MT, et al. Supplemental Breast Cancer Screening With Molecular Breast Imaging for Women With Dense Breast Tissue. AJR Am J Roentgenol. Aug 2016; 207(2): 450-7. PMID 27186635
- 20. Brem RF, Ruda RC, Yang JL, et al. Breast-Specific γ-Imaging for the Detection of Mammographically Occult Breast Cancer in Women at Increased Risk. J Nucl Med. May 2016; 57(5): 678-84. PMID 26823569
- 21. Zhang Z, Wang W, Wang X, et al. Breast-specific gamma imaging or ultrasonography as adjunct imaging diagnostics in women with mammographically dense breasts. Eur Radiol. Nov 2020; 30(11): 6062-6071. PMID 32524221
- 22. Rhodes DJ, Hruska CB, Phillips SW, et al. Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology. Jan 2011; 258(1): 106-18. PMID 21045179
- 23. Brem RF, Rapelyea JA, Zisman G, et al. Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology. Oct 2005; 237(1): 274-80. PMID 16126919
- 24. Cho MJ, Yang JH, Yu YB, et al. Validity of breast-specific gamma imaging for Breast Imaging Reporting and Data System 4 lesions on mammography and/or ultrasound. Ann Surg Treat Res. Apr 2016; 90(4): 194-200. PMID 27073789
- 25. Meissnitzer T, Seymer A, Keinrath P, et al. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. Br J Radiol. Jul 2015; 88(1051): 20150147. PMID 25882690
- 26. Tan H, Jiang L, Gu Y, et al. Visual and semi-quantitative analyses of dual-phase breast-specific gamma imaging with Tc-99m-sestamibi in detecting primary breast cancer. Ann Nucl Med. Jan 2014; 28(1): 17-24. PMID 24142630
- 27. Spanu A, Sanna D, Chessa F, et al. The clinical impact of breast scintigraphy acquired with a breast specific γ-camera (BSGC) in the diagnosis of breast cancer: incremental value versus mammography. Int J Oncol. Aug 2012; 41(2): 483-9. PMID 22641247
- 28. Hruska CB, Phillips SW, Whaley DH, et al. Molecular breast imaging: use of a dual-head dedicated gamma camera to detect small breast tumors. AJR Am J Roentgenol. Dec 2008; 191(6): 1805-15. PMID 19020253
- 29. Spanu A, Chessa F, Meloni GB, et al. The role of planar scintimammography with high-resolution dedicated breast camera in the diagnosis of primary breast cancer. Clin Nucl Med. Nov 2008; 33(11): 739-42. PMID 18936602

- 30. Brem RF, Petrovitch I, Rapelyea JA, et al. Breast-specific gamma imaging with 99mTc-Sestamibi and magnetic resonance imaging in the diagnosis of breast cancer--a comparative study. Breast J. 2007; 13(5): 465-9. PMID 17760667
- 31. Guo C, Zhang C, Liu J, et al. Is Tc-99m sestamibi scintimammography useful in the prediction of neoadjuvant chemotherapy responses in breast cancer? A systematic review and meta-analysis. Nucl Med Commun. Jul 2016; 37(7): 675-88. PMID 26974314
- 32. Lee HS, Ko BS, Ahn SH, et al. Diagnostic performance of breast-specific gamma imaging in the assessment of residual tumor after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat. May 2014; 145(1): 91-100. PMID 24671359
- 33. Edwards C, Williams S, McSwain AP, et al. Breast-specific gamma imaging influences surgical management in patients with breast cancer. Breast J. 2013; 19(5): 512-9. PMID 23848225
- 34. Xu HB, Li L, Xu Q. Tc-99m sestamibi scintimammography for the diagnosis of breast cancer: meta-analysis and meta-regression. Nucl Med Commun. Nov 2011; 32(11): 980-8. PMID 21956488
- 35. Taillefer R. The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med. Jan 1999; 29(1): 16-40. PMID 9990681
- 36. Schillaci O, Scopinaro F, Spanu A, et al. Detection of axillary lymph node metastases in breast cancer with Tc-99m tetrofosmin scintigraphy. Int J Oncol. Mar 2002; 20(3): 483-7. PMID 11836558
- 37. Spanu A, Dettori G, Nuvoli S, et al. (99)mTc-tetrofosmin SPET in the detection of both primary breast cancer and axillary lymph node metastasis. Eur J Nucl Med. Dec 2001; 28(12): 1781-94. PMID 11734916
- 38. Thongvitokomarn S, Polchai N. Indocyanine Green Fluorescence Versus Blue Dye or Radioisotope Regarding Detection Rate of Sentinel Lymph Node Biopsy and Nodes Removed in Breast Cancer: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev. May 01 2020; 21(5): 1187-1195. PMID 32458621
- 39. Goonawardena J, Yong C, Law M. Use of indocyanine green fluorescence compared to radioisotope for sentinel lymph node biopsy in early-stage breast cancer: systematic review and meta-analysis. Am J Surg. Sep 2020; 220(3): 665-676. PMID 32115177
- 40. van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Randomized comparison of near-infrared fluorescence imaging using indocyanine green and 99(m) technetium with or without patent blue for the sentinel lymph node procedure in breast cancer patients. Ann Surg Oncol. Dec 2012; 19(13): 4104-11. PMID 22752379
- 41. Johnson CB, Boneti C, Korourian S, et al. Intraoperative injection of subareolar or dermal radioisotope results in predictable identification of sentinel lymph nodes in breast cancer. Ann Surg. Oct 2011; 254(4): 612-8. PMID 21918427
- 42. Martin RC, Edwards MJ, Wong SL, et al. Practical guidelines for optimal gamma probe detection of sentinel lymph nodes in breast cancer: results of a multi-institutional study. For the University of Louisville Breast Cancer Study Group. Surgery. Aug 2000; 128(2): 139-44. PMID 10922983
- 43. Unkart J, Wallace A. Use of lymphoscintigraphy with Tc-99m tilmanocept does not affect the number of nodes removed during sentinel node biopsy in breast cancer [abstract]. J Nucl Med. 2016;57(Suppl 2):615.
- 44. Sun X, Liu JJ, Wang YS, et al. Roles of preoperative lymphoscintigraphy for sentinel lymph node biopsy in breast cancer patients. Jpn J Clin Oncol. Aug 2010; 40(8): 722-5. PMID 20430775
- 45. Mathew MA, Saha AK, Saleem T, et al. Pre-operative lymphoscintigraphy before sentinel lymph node biopsy for breast cancer. Breast. Feb 2010; 19(1): 28-32. PMID 19913418
- 46. Practice Bulletin Number 179: Breast Cancer Risk Assessment and Screening in Average-Risk Women. Obstet Gynecol. Jul 2017; 130(1): e1-e16. PMID 28644335
- 47. American College of Radiology (ACR). Appropriateness criteria: palpable breast masses. 2022; https://acsearch.acr.org/docs/69495/Narrative/. Accessed August 4, 2024.
- 48. American College of Radiology (ACR). Appropriateness criteria: breast pain. 2018; https://acsearch.acr.org/docs/3091546/Narrative/. Accessed August 5, 2024.
- 49. Monticciolo DL, Newell MS, Moy L, et al. Breast Cancer Screening in Women at Higher-Than-Average Risk: Recommendations From the ACR. J Am Coll Radiol. Mar 2018; 15(3 Pt A): 408-414. PMID 29371086
- 50. Lyman GH, Somerfield MR, Giuliano AE. Sentinel Lymph Node Biopsy for Patients With Early-Stage Breast Cancer: 2016 American Society of Clinical Oncology Clinical Practice Guideline Update Summary. J Oncol Pract. Mar 2017; 13(3): 196-198. PMID 28118104

- 51. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. Version 4.2024. https://www.nccn.org/professionals/physician\_gls/pdf/breast.pdf. Accessed August 6, 2024.
- 52. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Breast Cancer Screening and Diagnosis. Version 4.2024. https://www.nccn.org/professionals/physician\_gls/pdf/breast-screening.pdf. Accessed August 7, 2024.