Medical Policy
Deep Brain Stimulation

Table of Contents
- Policy: Commercial
- Coding Information
- Information Pertaining to All Policies
- Policy: Medicare
- Description
- References
- Authorization Information
- Policy History

Policy Number: 473
BCBSA Reference Number: 7.01.63 (For Plan internal use only)

Related Policies
- Responsive Neurostimulation for the Treatment of Refractory Partial Epilepsy, #716
- Transcranial Magnetic Stimulation as a Treatment of Depression, #297
- Vagus Nerve Stimulation, #474

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Unilateral deep brain stimulation of the thalamus may be considered MEDICALLY NECESSARY in individuals with disabling, medically unresponsive tremor due to essential tremor or Parkinson disease.

Bilateral deep brain stimulation of the thalamus may be considered MEDICALLY NECESSARY in individuals with disabling, medically unresponsive tremor in both upper limbs due to essential tremor or Parkinson disease.

Unilateral or bilateral deep brain stimulation of the globus pallidus or subthalamic nucleus may be considered MEDICALLY NECESSARY in the following individuals:
- Those with Parkinson disease with ALL of the following:
 o A good response to levodopa, AND
 o Motor complications not controlled by pharmacologic therapy; AND
 o one of the following:
 ▪ A minimum score of 30 points on the motor portion of the Unified Parkinson Disease Rating Scale when the patient has been without medication for approximately 12 hours, OR
 ▪ Parkinson disease for at least 4 years
- Individuals older than 7 years with chronic, intractable (drug refractory) primary dystonia, including generalized and/or segmental dystonia, hemidystonia, and cervical dystonia (torticollis).

Deep brain stimulation for other movement disorders, including but not limited to tardive dyskinesia multiple sclerosis, and post-traumatic dyskinesia, is considered INVESTIGATIONAL.

Deep brain stimulation for the treatment of chronic cluster headaches is considered INVESTIGATIONAL.
Deep brain stimulation for the treatment of other psychiatric or neurologic disorders, including but not limited to epilepsy, Tourette syndrome, depression, obsessive-compulsive disorder, anorexia nervosa, alcohol addiction, Alzheimer disease, and chronic pain, is considered INVESTIGATIONAL.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This procedure is performed in the inpatient setting.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This procedure is performed in the inpatient setting.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria MUST be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61863</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg, thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; first array</td>
</tr>
<tr>
<td>61864</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg, thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of intraoperative microelectrode recording; each additional array (List separately in addition to primary procedure)</td>
</tr>
<tr>
<td>61867</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg, thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), with use of intraoperative microelectrode recording; first array</td>
</tr>
<tr>
<td>61868</td>
<td>Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation of neurostimulator electrode array in subcortical site (eg, thalamus, globus pallidus, subthalamic nucleus, periventricular, periaqueductal gray), with use of intraoperative microelectrode recording; each additional array</td>
</tr>
</tbody>
</table>

Description
Deep Brain Stimulation
Deep brain stimulation involves the stereotactic placement of an electrode into the brain (ie, hypothalamus, thalamus, globus pallidus, or subthalamic nucleus). The electrode is initially attached to a temporary transcutaneous cable for short-term stimulation to validate treatment effectiveness. Several days later, the patient returns for permanent subcutaneous surgical implantation of the cable and a radiofrequency-coupled or battery-powered programmable stimulator. The electrode is typically implanted unilaterally on the side corresponding to the most severe symptoms. However, use of bilateral stimulation using 2 electrode arrays has also been investigated in patients with bilateral, severe symptoms. After implantation, noninvasive programming of the neurostimulator can be adjusted to the patient’s symptoms. This feature may be important for patients with Parkinson disease, whose disease may progress over time, requiring different neurostimulation parameters. Setting the optimal neurostimulation parameters may involve the balance between optimal symptom control and appearance of adverse effects of neurostimulation, such as dysarthria, disequilibrium, or involuntary movements.

Summary

Description
Deep brain stimulation involves the stereotactic placement of an electrode into a central nervous system nucleus (eg, hypothalamus, thalamus, globus pallidus, subthalamic nucleus). Deep brain stimulation is used as an alternative to permanent neuroablative procedures for control of essential tremor and Parkinson disease. Deep brain stimulation is also being evaluated for the treatment of a variety of other neurologic and psychiatric disorders.

Summary of Evidence
For individuals who have essential tremor or tremor in Parkinson disease who receive deep brain stimulation of the thalamus, the evidence includes a systematic review and case series. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The systematic review (a TEC Assessment) concluded that there was sufficient evidence that deep brain stimulation of the thalamus results in clinically significant tremor suppression and that outcomes after deep brain stimulation were at least as good as thalamotomy. Subsequent studies reporting long-term follow-up have supported the conclusions of the TEC Assessment and found that tremors were effectively controlled 5 to 6 years after deep brain stimulation. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have symptoms (eg, speech, motor fluctuations) associated with Parkinson disease (advanced or >4 years in duration with early motor symptoms) who receive deep brain stimulation of the globus pallidus interna or subthalamic nucleus, the evidence includes randomized controlled trials (RCTs) and systematic reviews. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. One of the systematic reviews (a TEC Assessment) concluded that studies evaluating deep brain stimulation of the globus pallidus interna or subthalamic nucleus have consistently demonstrated clinically significant improvements in outcomes (eg, neurologic function). Other systematic reviews have also found significantly better outcomes after deep brain stimulation than after a control intervention. An RCT in patients with levodopa-responsive Parkinson disease of at least 4 years in duration and uncontrolled motor symptoms found that quality of life at 2 years was significantly higher when deep brain stimulation was provided in addition to medical therapy. Meta-analyses of RCTs comparing deep brain stimulation of the globus pallidus interna with deep brain stimulation of the subthalamic nucleus have reported mixed findings and have not shown that 1 type of stimulation is superior to the other. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have primary dystonia who receive deep brain stimulation of the globus pallidus interna or subthalamic nucleus, the evidence includes systematic reviews, RCTs, and case series. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. A pooled analysis of 24 studies, mainly uncontrolled, found improvements in motor scores and disability scores after 6 months and at last follow-up (mean, 32 months). Both double-blind RCTs found that severity scores improved more after active than after sham stimulation. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.
For individuals who have tardive dyskinesia or tardive dystonia who receive deep brain stimulation, the evidence includes a systematic review, an RCT and case series. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The systematic review found an improvement in symptom severity with deep brain stimulation, but the authors noted some cases of symptom worsening or lack of improvement. All of the 14 included studies had small sample sizes (range, 2 to 22 patients). The RCT did not report statistically significant improvement in the dystonia severity outcomes or the secondary outcomes related to disability and quality of life, but these may have been underpowered. Additional studies, especially RCTs or other controlled studies, are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have epilepsy who receive deep brain stimulation, the evidence includes systematic reviews, RCTs, and many observational studies. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Two RCTs with more than 15 patients were identified. The first RCT evaluated anterior thalamic nucleus deep brain stimulation and reported that deep brain stimulation had a positive impact on seizure frequency during some parts of the blinded trial phase, but not others, and a substantial number of adverse events (in >30% of patients). There were no differences between groups in 50% responder rates, Liverpool Seizure Severity Scale, or Quality of Life in Epilepsy scores. A 7-year open-label follow-up of the RCT included 66% of implanted patients; reasons for missing data were primarily related to adverse events or dissatisfaction with the device. Reduction in seizure frequency continued to improve during follow-up among the patients who continued follow-up. The second RCT (n=16) showed a benefit with deep brain stimulation. Many observational studies reported fewer seizures compared with baseline, however, without control groups, interpretation of these results is limited. Additional trials are required to determine the impact of deep brain stimulation on patient outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have Tourette syndrome who receive deep brain stimulation, the evidence includes observational studies, RCTs, and systematic reviews. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Two RCTs with 15 or more patients have been reported. One RCT found differences in severity of Tourette syndrome for active versus sham at 3 months while the other RCT did not. Neither study demonstrated improvements in comorbid symptoms of obsessive-compulsive disorder or depression. Both studies reported high rates of serious adverse events. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have cluster headaches or facial pain who receive deep brain stimulation, the evidence includes a randomized crossover study and case series. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. In the RCT, the between-group difference in response rates did not differ significantly between active and sham stimulation phases. Additional RCTs or controlled studies are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have treatment-resistant depression who receive deep brain stimulation, the evidence includes RCTs and systematic reviews. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. A number of case series and several prospective controlled trials evaluating deep brain stimulation have been published. Two RCTs of deep brain stimulation in the subgenual cingulate cortex and ventral striatum/ventral capsule were terminated for futility. Another RCT of stimulation of the same brain area (ventral striatum/ventral capsule) did not find a statistically significant difference between groups in the primary outcome (clinical response), and adverse psychiatric events occurred more frequently in the treatment group than in the control group. More recently, a controlled crossover trial randomized patients to sham or active stimulation of the anterior limb of the internal capsule after a year of open-label stimulation. There was a greater reduction in symptom scores after active stimulation, but only in patients who were responders in the open-label phase. Stimulation of the subcallosal (subgenual) cingulate was evaluated in a 2019 sham-controlled within-subject study that found prolonged response in 50% of patients and remission in 30% of patients with treatment-resistant
depression. Deep brain stimulation for patients with major depressive disorder who have failed all other treatment options is an active area of research, but the brain regions that might prove to be effective for treatment-resistant depression have yet to be established. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have obsessive-compulsive disorder who receive deep brain stimulation, the evidence includes RCTs and meta-analyses. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Among the RCTs on deep brain stimulation for obsessive-compulsive disorder, only 1 has reported an outcome of clinical interest (therapeutic response rate), and that trial did not find a statistically significant benefit for deep brain stimulation compared with sham treatment. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have other neurologic or psychiatric disorders who receive deep brain stimulation, the evidence includes a number of nonrandomized studies or RCTs in patients with multiple sclerosis, chronic pain, or alcohol use disorder. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. One RCT with 10 multiple sclerosis patients, 2 RCTs in patients with chronic pain, and 1 RCT in patients with treatment-refractory alcohol use disorder is insufficient evidence on which to draw conclusions about the efficacy of deep brain stimulation in these populations. Additional trials are required. For individuals who have anorexia nervosa, Alzheimer disease, Huntington disease, or chronic pain who receive deep brain stimulation, the evidence includes case series; RCTs are needed to evaluate the efficacy of deep brain stimulation for these conditions. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/2023</td>
<td>Annual policy review. Minor editorial refinements to policy statements; intent unchanged.</td>
</tr>
<tr>
<td>6/2022</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>5/2021</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2021</td>
<td>Medicare information removed. See MP #132 Medicare Advantage Management for local coverage determination and national coverage determination reference.</td>
</tr>
<tr>
<td>3/2019</td>
<td>Prior authorization information clarified.</td>
</tr>
<tr>
<td>1/2019</td>
<td>Clarified coding changes. Prior authorization clarified. This procedure is primarily performed in the inpatient setting.</td>
</tr>
<tr>
<td>9/2017</td>
<td>Annual policy review. Unilateral or bilateral deep brain stimulation of the globus pallidus or subthalamic nucleus revised to include “OR Parkinson disease for at least 4 years” to medically necessary criteria. New investigational indications described. Clarified coding information. Effective 9/1/2017.</td>
</tr>
<tr>
<td>6/2016</td>
<td>Annual policy review. Added “upper” to medically necessary statement on DBS for medically unresponsive tremor due to essential tremor or Parkinson disease to clarify that the statement refers to both upper limbs. 6/1/2016</td>
</tr>
<tr>
<td>6/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes, effective 10/2015.</td>
</tr>
<tr>
<td>12/2013</td>
<td>Annual policy review. New investigational indications described. Effective 12/1/2013. Removed HCPCS codes L8680, L8685-L8688 as they do not meet the intent of the policy</td>
</tr>
<tr>
<td>Date</td>
<td>Action Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>10/2013</td>
<td>Removed CPT codes 61880, 61885, 61886, 61888, 95970 and diagnosis codes 333.6, 333.83, 333.89 & 723.5 as they do not apply to the policy.</td>
</tr>
<tr>
<td>4/2011</td>
<td>Annual policy review. No changes to policy statements.</td>
</tr>
<tr>
<td>3/2009</td>
<td>Annual policy review. No changes to policy statements.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

- [Medical Policy Terms of Use](#)
- [Managed Care Guidelines](#)
- [Indemnity/PPO Guidelines](#)
- [Clinical Exception Process](#)
- [Medical Technology Assessment Guidelines](#)

References

