

Blue Cross Blue Shield of Massachusetts is an Independent Licensee of the Blue Cross and Blue Shield Association

Medical Policy

High-Dose Rate Temporary Prostate Brachytherapy

Table of Contents

• Policy: Commercial

Coding Information

Information Pertaining to All Policies

Policy: Medicare

Description

• References

Authorization Information

Policy History

Policy Number: 353

BCBSA Reference Number: 8.01.33

NCD/LCD: NA

Related Policies

- Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions, #437
- Focal Treatment FOR Prostate Cancer, #733
- Stereotactic Radiosurgery and Stereotactic Body Radiotherapy, #277
- Cryosurgical Ablation of Miscellaneous Solid Tumors Other Than Liver, Prostate, or Dermatologic Tumors, #260
- Brachytherapy for clinically localized prostate cancer using permanently implanted seeds, #175
- Intensity-Modulated Radiation Therapy (IMRT) of the Prostate, #090

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

High-dose rate prostate brachytherapy may be <u>MEDICALLY NECESSARY</u> as monotherapy or in conjunction with external beam radiation therapy in the treatment of localized prostate cancer.

High-dose rate prostate brachytherapy is **INVESTIGATIONAL** in the treatment of prostate cancer when used as salvage therapy.

Prior Authorization Information

Inpatient

 For services described in this policy, precertification/preauthorization <u>IS REQUIRED</u> for all products if the procedure is performed <u>inpatient</u>.

Outpatient

For services described in this policy, see below for products where prior authorization <u>might be</u> <u>required</u> if the procedure is performed <u>outpatient</u>.

	Outpatient
Commercial Managed Care (HMO and POS)	Prior authorization is not required .

Commercial PPO and Indemnity	Prior authorization is not required .
Medicare HMO Blue SM	Prior authorization is not required .
Medicare PPO Blue SM	Prior authorization is not required .

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above <u>medical necessity criteria MUST</u> be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

CPT codes:	Code Description
55860	Exposure of prostate, any approach, for insertion of radioactive substance
55875	Transperineal placement of needles or catheters into prostate for interstitial
	radioelement application, with or without cystoscopy
76873	Ultrasound, transrectal; prostate volume study for brachytherapy treatment planning
76965	Ultrasound guidance for interstitial radioelement application
77316	Brachytherapy isodose plan; simple (calculation[s] made from 1 to 4 sources, or remote afterloading brachytherapy, 1 channel), includes basic dosimetry calculation(s)
	Brachytherapy isodose plan; intermediate (calculation[s] made from 5 to 10 sources,
77317	or remote afterloading brachytherapy, 2-12 channels), includes basic dosimetry calculation(s)
77318	Brachytherapy isodose plan; complex (calculation[s] made from over 10 sources, or remote afterloading brachytherapy, over 12 channels), includes basic dosimetry calculation(s)
77010	Remote afterloading high dose rate radionuclide interstitial or intracavitary
77770	brachytherapy, includes basic dosimetry, when performed; 1 channel
77771	Remote afterloading high dose rate radionuclide interstitial or intracavitary
77771	brachytherapy, includes basic dosimetry, when performed; 2-12 channels Remote afterloading high dose rate radionuclide interstitial or intracavitary
77772	brachytherapy, includes basic dosimetry, when performed; over 12 channels
77778	Interstitial radiation source application, complex, includes
	supervision, handling, loading of radiation source, when
	performed
77790	Supervision, handling, loading of radiation source

HCPCS Codes

HCPCS	
codes:	Code Description
C1717	Brachytherapy source, nonstranded, high dose rate iridium-192, per source
C2638	Brachytherapy source, stranded, iodine-125, per source
C2639	Brachytherapy source, nonstranded, iodine-125, per source
C2640	Brachytherapy source, stranded, palladium-103, per source
C2641	Brachytherapy source, nonstranded, palladium-103, per source
C2642	Brachytherapy source, stranded, cesium-131, per source
C2643	Brachytherapy source, nonstranded, cesium-131, per source

00004	De Perlamente facilitate (Laurence Caracas)
Q3001	Radioelements for brachytherapy, any type, each

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT codes above if <u>medical necessity criteria</u> are met:

ICD-10 Diagnosis Codes

ICD-10-CM Diagnosis codes:	Code Description
C61	Malignant neoplasm of prostate
D07.5	Carcinoma in situ of prostate

Description

Brachytherapy for prostate cancer can be delivered in a variety of ways. Perhaps the most common technique uses radioactive seeds permanently implanted into the prostate tissue. These seeds contain isotopes that slowly emit radiation of relatively low energy. In contrast, temporary prostate brachytherapy involves the use of higher energy radioisotopes such as iridium 192. The latter isotopes deliver radiation at higher dose rates than permanent seeds and may be more effective in destroying rapidly dividing cancer cells. For implantation, needle catheters are placed into the prostate gland using transrectal ultrasound guidance. Once placed, a dosimetric plan is developed, and the radioactive source is inserted into each needle using an after loading device. The radioactive source is left in the needle for a predetermined time, called the "dwell" time. The radiation usually is delivered once or twice daily over several days. The dwell time can be altered at various positions along the needle's length to control dose distribution to the target volume and critical surrounding structures (eg, rectum, urethra). This strategy contrasts with permanent seed implantation in which dosimetry is calculated before needle placement and which cannot be altered after seed implantation. Treatment typically consists of delivering a dose of 4000 to 5000 centigray with external-beam radiotherapy (EBRT) to the prostate and periprostatic tissues, while high-dose rate (HDR) brachytherapy is used as the method of dose escalation to the prostate gland. Total boost doses vary. Additionally, studies are also being conducted using HDR brachytherapy as the sole treatment modality (monotherapy) for prostate cancer.

It is accepted that increasing doses of radiotherapy are associated with improved biochemical control (ie, stable levels of prostate-specific antigen), and thus there has been an interest in exploring different techniques of dose escalation, simultaneously limiting both early and late toxicities in surrounding tissues. In patients with the locally advanced disease, it has been hypothesized that local failure might be related to large tumor volume and radioresistant cell clones, both of which might respond to higher radiation doses. HDR brachytherapy has been primarily investigated as an adjunct to EBRT for dose escalation. Other techniques for dose escalation include EBRT using intensity-modulated radiotherapy for treatment planning and delivery, proton beam therapy (which may also use intensity-modulated radiotherapy), or EBRT combined with brachytherapy using interstitial seeds.

Summary

Description

High-dose rate (HDR) temporary prostate brachytherapy is a technique for delivering a high-intensity radiation source directly to the prostate gland to treat cancer. The radiation source is administered through hollow catheters or needles inserted precisely into several areas of the prostate gland using ultrasound guidance and treatment planning computed tomography or ultrasound images. Radiation is applied to target areas until the prescribed dose is reached and is then removed. The goal of treatment is to induce direct tumor necrosis and reduce toxicity and surrounding tissue damage.

Summary of Evidence

For individuals who have localized prostate cancer who receive HDR temporary brachytherapy plus external-beam radiotherapy (EBRT), the evidence includes randomized controlled trials (RCTs), observational studies, and a systematic review. Relevant outcomes are overall survival (OS), disease-specific survival, and treatment-related morbidity. One of the RCTs found no statistically significant

differences in outcomes between patients treated with HDR brachytherapy plus EBRT and those receiving radical prostatectomy. The other RCT found significantly better biochemical recurrence-free survival, but not better OS, in patients treated with HDR brachytherapy plus EBRT compared with EBRT alone. Among several controlled observational studies with matched analyses, one has reported 5 year OS rates for HDR brachytherapy plus EBRT similar to those of 1 of the RCTs. In another study, 4 year biochemical recurrence-free survival was significantly higher after HDR brachytherapy plus EBRT than after EBRT alone. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have localized prostate cancer who receive HDR temporary brachytherapy as monotherapy, the evidence includes large observational studies and systematic reviews. Relevant outcomes are OS, disease-specific survival, and treatment-related morbidity. A number of observational studies, controlled and uncontrolled, have been published. Systematic reviews have found biochemical recurrence-free survival rates of 80% to 100%. Long-term survival data are available from case series; 1 found an 8-year survival rate of 95% and another found an actutimes 10-year survival rate of 77%. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have treatment-resistant or recurrent prostate cancer and no disseminated disease who receive HDR temporary brachytherapy as salvage treatment with or without EBRT, the evidence includes case series. Relevant outcomes are OS, disease-specific survival, and treatment-related morbidity. Only 3 cases series have reported survival outcomes; no comparative studies have been published. In these series, median 5-year OS rates after salvage HDR brachytherapy ranged from 83% to 95.5% and the median 5-year biochemical control rate ranged from 45% to 67%. Rates of grade 3 or 4 toxicities were relatively low. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

Date	Action
11/2020	BCBSA National medical policy review. Description, summary, and references
	updated. Policy statements unchanged.
9/2019	BCBSA National medical policy review. Description, summary, and references
	updated. Policy statements unchanged.
9/2018	BCBSA National medical policy review. No changes to policy statements. New
	references added. Background and summary clarified.
8/2017	New references added from BCBSA National medical policy.
8/2016	New references added from BCBSA National medical policy.
1/2016	Clarified coding information.
8/2015	New references added from BCBSA National medical policy.
1/2015	Clarified coding information.
9/2014	New references added from BCBSA National medical policy.
5/2014	Updated Coding section with ICD10 procedure and diagnosis codes, effective
	10/2015.
8/2013	New references from BCBSA National medical policy.
11/2011-4/2012	Medical policy ICD 10 remediation: Formatting, editing and coding updates.
	No changes to policy statements.
1/1/2012	New policy, effective 01/01/2012, describing covered and non-covered indication.

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use

Managed Care Guidelines

Indemnity/PPO Guidelines

Clinical Exception Process

Medical Technology Assessment Guidelines

References

- 1. Zaorsky NG, Doyle LA, Yamoah K, et al. High dose rate brachytherapy boost for prostate cancer: a systematic review. Cancer Treat Rev. Apr 2014; 40(3): 414-25. PMID 24231548
- 2. Lennernas B, Majumder K, Damber JE, et al. Radical prostatectomy versus high-dose irradiation in localized/locally advanced prostate cancer: A Swedish multicenter randomized trial with patient-reported outcomes. Acta Oncol. Jun 2015; 54(6): 875-81. PMID 25362844
- 3. Aaronson NK, Ahmedzai S, Bergman B, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. Mar 03 1993; 85(5): 365-76. PMID 8433390
- 4. Hoskin PJ, Motohashi K, Bownes P, et al. High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: initial results of a randomised phase three trial. Radiother Oncol. Aug 2007; 84(2): 114-20. PMID 17531335
- 5. Hoskin PJ, Rojas AM, Bownes PJ, et al. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother Oncol. May 2012; 103(2): 217-22. PMID 22341794
- Boehm K, Schiffmann J, Tian Z, et al. Five-year biochemical recurrence-free and overall survival following high-dose-rate brachytherapy with additional external beam or radical prostatectomy in patients with clinically localized prostate cancer. Urol Oncol. Mar 2016; 34(3): 119.e11-8. PMID 26602027
- 7. Khor R, Duchesne G, Tai KH, et al. Direct 2-arm comparison shows benefit of high-dose-rate brachytherapy boost vs external beam radiation therapy alone for prostate cancer. Int J Radiat Oncol Biol Phys. Mar 01 2013; 85(3): 679-85. PMID 22954770
- 8. Yaxley JW, Lah K, Yaxley JP, et al. Long-term outcomes of high-dose-rate brachytherapy for intermediate- and high-risk prostate cancer with a median follow-up of 10 years. BJU Int. Jul 2017; 120(1): 56-60. PMID 27628127
- 9. Zaorsky NG, Hurwitz MD, Dicker AP, et al. Is robotic arm stereotactic body radiation therapy "virtual high dose ratebrachytherapy" for prostate cancer? An analysis of comparative effectiveness using published data [corrected]. Expert Rev Med Devices. May 2015; 12(3): 317-27. PMID 25540018
- 10. Demanes DJ, Ghilezan MI. High-dose-rate brachytherapy as monotherapy for prostate cancer. Brachytherapy. Nov-Dec 2014; 13(6): 529-41. PMID 25085454
- 11. Hegde JV, Collins SP, Fuller DB, et al. A Pooled Analysis of Biochemical Failure in Intermediate-risk Prostate Cancer Following Definitive Stereotactic Body Radiotherapy (SBRT) or High-Dose-Rate Brachytherapy (HDR-B) Monotherapy. Am J Clin Oncol. May 2018; 41(5): 502-507. PMID 27322703
- 12. Chiang PH, Liu YY. Comparisons of oncological and functional outcomes among radical retropubic prostatectomy, high dose rate brachytherapy, cryoablation and high-intensity focused ultrasound for localized prostate cancer. Springerplus. 2016; 5(1): 1905. PMID 27867812
- 13. Strom TJ, Cruz AA, Figura NB, et al. Health-related quality-of-life changes due to high-dose-rate brachytherapy, low-dose-rate brachytherapy, or intensity-modulated radiation therapy for prostate cancer. Brachytherapy. Nov-Dec 2015; 14(6): 818-25. PMID 26452602
- 14. Demanes DJ, Martinez AA, Ghilezan M, et al. High-dose-rate monotherapy: safe and effective brachytherapy for patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. Dec 01 2011; 81(5): 1286-92. PMID 21310546
- 15. Hauswald H, Kamrava MR, Fallon JM, et al. High-Dose-Rate Monotherapy for Localized Prostate Cancer: 10-Year Results. Int J Radiat Oncol Biol Phys. Mar 15 2016; 94(4): 667-74. PMID 26443877
- Wojcieszek P, Szlag M, Glowacki G, et al. Salvage high-dose-rate brachytherapy for locally recurrent prostate cancer after primary radiotherapy failure. Radiother Oncol. Jun 2016; 119(3): 405-10. PMID 27165612
- 17. Chen CP, Weinberg V, Shinohara K, et al. Salvage HDR brachytherapy for recurrent prostate cancer after previous definitive radiation therapy: 5-year outcomes. Int J Radiat Oncol Biol Phys. Jun 01 2013; 86(2): 324-9. PMID 23474112
- 18. Jiang P, van der Horst C, Kimmig B, et al. Interstitial high-dose-rate brachytherapy as salvage treatment for locally recurrent prostate cancer after definitive radiation therapy: Toxicity and 5-year outcome. Brachytherapy. Jan 2017; 16(1): 186-192. PMID 28341011

- 19. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Prostate cancer. Version 2.2020. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed August 6, 2020.
- 20. Hsu IC, Yamada Y, Assimos DG, et al. ACR Appropriateness Criteria high-dose-rate brachytherapy for prostate cancer. Brachytherapy. Jan-Feb 2014; 13(1): 27-31. PMID 24368283