Medical Policy
Radioembolization for Primary and Metastatic Tumors of the Liver

Table of Contents
- Policy: Commercial
- Coding Information
- Policy: Medicare
- Description
- Authorization Information
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 292
BCBSA Reference Number: 8.01.43 (For Plan internal use only)
NCD/LCD: N/A

Related Policies
- Radiofrequency Ablation of Miscellaneous Solid Tumors Excluding Liver Tumors, #259
- Cryosurgical Ablation of Primary or Metastatic Liver Tumors, #633
- Transcatheter Arterial Chemoembolization (TACE) to Treat Primary or Metastatic Liver Malignancies, #634
- Radiofrequency Ablation of Primary or Metastatic Liver Tumors, #286

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity
Medicare HMO BlueSM and Medicare PPO BlueSM Members

Radioembolization may be considered MEDICALLY NECESSARY to treat primary hepatocellular carcinoma that is unresectable and limited to the liver.

Radioembolization may be considered MEDICALLY NECESSARY in primary hepatocellular carcinoma as a bridge to liver transplantation.

Radioembolization may be considered MEDICALLY NECESSARY to treat hepatic metastases from neuroendocrine tumors (carcinoid and noncarcinoid, as classified on pathology report or by WHO classification) with diffuse and symptomatic disease when systemic therapy has failed to control symptoms.*

*Symptomatic disease from metastatic neuroendocrine tumors refers to symptoms related to excess hormone production.

Radioembolization may be considered MEDICALLY NECESSARY to treat unresectable hepatic metastases from colorectal carcinoma, melanoma (ocular or cutaneous), or breast cancer that are both progressive and diffuse, in individuals with liver-dominant disease who are refractory to chemotherapy or are not candidates for chemotherapy or other systemic therapies.
Radioembolization is considered **INVESTIGATIONAL** for all other hepatic metastases except as noted above.

Radioembolization may be considered **MEDICALLY NECESSARY** to treat primary intrahepatic cholangiocarcinoma in individuals with unresectable tumors.

Radioembolization is considered **INVESTIGATIONAL** for all other indications not described above.

Radioembolization should be reserved for patients with adequate functional status (Eastern Cooperative Oncology Group [ECOG] Performance Status 0-2), adequate liver function and reserve, Child-Pugh score A or B, and liver-dominant metastases.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

Outpatient
- For services described in this policy, see below for products where prior authorization **might be required** if the procedure is performed **outpatient**.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare HMO Blue℠</td>
<td>Prior authorization is not required.</td>
</tr>
<tr>
<td>Medicare PPO Blue℠</td>
<td>Prior authorization is not required.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above medical necessity criteria **MUST** be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2095</td>
<td>Transcatheter occlusion or embolization for tumor destruction, percutaneous, any method, using yttrium-90 microspheres</td>
</tr>
</tbody>
</table>

The following ICD Diagnosis Codes are considered medically necessary when submitted with the HCPCS code above if medical necessity criteria are met:

ICD-10 Diagnosis Codes

| ICD-10-CM Diagnosis codes: | Code Description |
Description
Treatments for Hepatic and Neuroendocrine Tumors
The use of external-beam radiotherapy and the application of more advanced radiotherapy approaches (eg, intensity-modulated radiotherapy) may be of limited use in patients with multiple diffuse lesions due to the low tolerance of the normal liver to radiation compared with the higher doses of radiation needed to kill the tumor.

Various nonsurgical ablative techniques have been investigated that seek to cure or palliate unresectable hepatic tumors by improving locoregional control. These techniques rely on extreme temperature changes (cryosurgery or radiofrequency ablation), particle and wave physics (microwave or laser ablation), or arterial embolization therapy including chemoembolization, bland embolization, or radioembolization.

Radioembolization
Radioembolization (referred to as selective internal radiotherapy in older literature) delivers small beads (microspheres) impregnated with yttrium-90 (Y90) intra-arterially via the hepatic artery. The microspheres, which become permanently embedded, are delivered to tumors preferentially because the hepatic circulation is uniquely organized, whereby tumors greater than 0.5 cm rely on the hepatic artery for blood supply while the normal liver is primarily perfused via the portal vein. Y90 is a pure beta-emitter with a relatively limited effective range and a short half-life that helps focus the radiation and minimize its spread. Candidates for radioembolization are initially examined by hepatic angiogram to identify and map the hepatic arterial system. At that time, a mixture of technetium 99-labeled albumin particles are delivered via the hepatic artery to simulate microspheres. Single-photon emission computed tomography is used to detect possible shunting of the albumin particles into the gastrointestinal or pulmonary vasculature.

Currently, 2 commercial forms of Y90 microspheres are available: a glass sphere (TheraSphere) and a resin sphere (SIR-Spheres). Noncommercial forms are mostly used outside the U.S. While the commercial products use the same radioisotope (Y90) and have the same target dose (100 gray), they differ in microsphere size profile, base material (ie, resin vs glass), and size of commercially available doses. The physical characteristics of the active and inactive ingredients affect the flow of microspheres during injection, their retention at the tumor site, spread outside the therapeutic target region, and dosimetry calculations. The U.S. Food and Drug Administration (FDA) granted premarket approval of SIR-Spheres for use in combination with 5-fluorouridine chemotherapy by hepatic arterial infusion to treat unresectable hepatic metastases from colorectal cancer. In contrast, TheraSphere's glass sphere was approved under a humanitarian device exemption for use as monotherapy to treat unresectable hepatocellular carcinoma. In 2007, this humanitarian device exemption was expanded to include patients with hepatocellular carcinoma who have partial or branch portal vein thrombosis. For these reasons, results obtained with a product do not necessarily apply to another commercial (or non-commercial) products.

Summary
Description
Radioembolization (RE), also referred to as selective internal radiotherapy, delivers small beads (microspheres) impregnated with yttrium 90 intra-arterially via the hepatic artery. The microspheres, which become permanently embedded, are delivered to tumors preferentially because the hepatic circulation is uniquely organized, whereby tumors greater than 0.5 cm rely on the hepatic artery for blood supply while
the normal liver is primarily perfused via the portal vein. Radioembolization has been proposed as a therapy for multiple types of primary and metastatic liver tumors.

Summary of Evidence

For individuals who have unresectable hepatocellular carcinoma (HCC) who receive radioembolization (RE) or RE with a liver transplant, the evidence includes primarily retrospective and prospective nonrandomized studies, with limited evidence from randomized controlled trials (RCTs). Relevant outcomes are overall survival (OS), functional outcomes, quality of life, and treatment-related morbidity. Nonrandomized studies have suggested that RE has high response rates compared with historical controls. Two small pilot RCTs have compared RE with alternative therapies for HCC, including transarterial chemoembolization and transarterial chemoembolization with drug-eluting beads. Both trials reported similar outcomes for RE compared with alternatives. Evidence from nonrandomized studies has demonstrated that RE can permit successful liver transplantation in certain patients. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have unresectable intrahepatic cholangiocarcinoma (ICC) who receive RE, the evidence includes phase 2 studies and case series. Relevant outcomes are OS, functional outcomes, quality of life, and treatment-related morbidity. Comparisons of these case series to case series of alternative treatments have suggested that RE for primary ICC has response rates similar to those seen with standard chemotherapy. Due to high study heterogeneity, it is difficult to identify patients that are most likely to benefit from treatment. A phase 2 study of RE with chemotherapy in the first-line setting reported a response rate of 39% and a disease control rate of 98%. The efficacy of RE in the neoadjuvant setting is being evaluated in an ongoing follow-up RCT. Another phase 2 study evaluating RE with or without subsequent chemotherapy in patients without prior treatment with chemotherapy or radiation found overall response rates of 25% and 16.7% in those who received RE with and without chemotherapy, respectively; the disease control rates were 75% and 58.3% amongst those who received RE with and without chemotherapy, respectively. However, at this time, the evidence is not yet sufficiently robust to draw definitive conclusions about treatment efficacy. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have unresectable neuroendocrine tumors who receive RE, the evidence includes an open-label phase 2 study, retrospective reviews, and case series, some of which have compared RE with other transarterial liver-directed therapies. Relevant outcomes are OS, functional outcomes, quality of life, and treatment-related morbidity. This evidence has suggested that RE provides outcomes similar to standard therapies and historical controls for patients with neuroendocrine tumor-related symptoms or progression of the liver tumor. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have unresectable intrahepatic metastases from colorectal cancer and prior treatment failure who receive RE, the evidence includes several small- to moderate-sized RCTs, prospective trials, and retrospective studies using a variety of comparators, as well as systematic reviews of these studies. Relevant outcomes are OS, functional outcomes, quality of life, and treatment-related morbidity. While studies of patients with prior chemotherapy failure have methodologic problems and have not shown definitive superiority of RE compared with alternatives in terms of survival benefit, they tend to show greater tumor response and significantly delayed disease progression, particularly with combined use of RE and chemotherapy. For example, the Efficacy Evaluation of TheraSphere Following Failed First Line Chemotherapy in Metastatic Colorectal Cancer (EPOCH) RCT found significantly prolonged primary endpoints of progression-free survival (PFS) (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.54 to 0.88) and hepatic PFS (HR, 0.59; 95% CI, 0.46 to 0.77) with combined RE and chemotherapy in patients who had progressed on first-line chemotherapy. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have unresectable intrahepatic metastases from other cancers (eg, breast, melanoma, pancreatic) who receive RE, the evidence includes nonrandomized studies. Relevant outcomes are OS, functional outcomes, quality of life, and treatment-related morbidity. These studies...
have shown significant tumor response; however, improvement in survival has not been demonstrated in controlled comparative studies. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2023</td>
<td>Annual policy review. References added. Minor editorial refinements to policy statements; intent unchanged.</td>
</tr>
<tr>
<td>9/2022</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>9/2021</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>9/2020</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>9/2018</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>8/2017</td>
<td>New references added from Annual policy review.</td>
</tr>
<tr>
<td>8/2016</td>
<td>Policy statement on neuroendocrine tumors clarified to indicate carcinoid and noncarcinoid, as classified on pathology report or by WHO classification.</td>
</tr>
<tr>
<td>5/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes. Effective 10/2015.</td>
</tr>
<tr>
<td>1/2014</td>
<td>Coding information clarified.</td>
</tr>
<tr>
<td>12/1/2011</td>
<td>Annual policy review. Changes to policy statements.</td>
</tr>
</tbody>
</table>

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References

67. Tice J. Selective internal radiation therapy or radioembolization for inoperable liver metastases from colorectal cancer San Francisco, CA: California Technology Assessment Forum; 2010.

