

Blue Cross Blue Shield of Massachusetts is an Independent Licenses of the Blue Cross and Blue Shield Association

Medical Policy

In Vitro Chemoresistance and Chemosensitivity Assays

Table of Contents

• Policy: Commercial

- Coding Information
- Information Pertaining to All Policies

Policy: Medicare

- Description
- References

- Authorization Information
- Policy History

Policy Number: 253

BCBSA Reference Number: 2.03.01

NCD/LCD: NA

Related Policies

NA

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

In vitro chemoresistance assays, including but not limited to, Extreme Drug Resistance Assays, are considered **INVESTIGATIONAL**.

In vitro chemosensitivity assays, including, but not limited to, the Histoculture Drug Response Assay, a fluorescent cytoprint assay, or the ChemoFx assay, are considered **INVESTIGATIONAL**.

Prior Authorization Information

Inpatient

• For services described in this policy, precertification/preauthorization <u>IS REQUIRED</u> for all products if the procedure is performed **inpatient**.

Outpatient

For services described in this policy, see below for products where prior authorization <u>might be</u> <u>required</u> if the procedure is performed <u>outpatient</u>.

	Outpatient
Commercial Managed Care (HMO and POS)	This is not a covered service.
Commercial PPO and Indemnity	This is not a covered service.
Medicare HMO Blue SM	This is not a covered service.
Medicare PPO Blue SM	This is not a covered service.

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The following CPT codes are considered investigational for <u>Commercial Members: Managed Care</u> (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

CPT codes:	Code Description
	Oncology (gynecologic), live tumor cell culture and chemotherapeutic response by dapi stain and morphology, predictive algorithm reported as a drug response score; first
81535	single drug or drug combination
	Oncology (gynecologic), live tumor cell culture and chemotherapeutic response by dapi stain and morphology, predictive algorithm reported as a drug response score; each additional single drug or drug combination (list separately in addition to code for
81536	primary procedure)

Description

A variety of chemoresistance and chemosensitivity assays have been clinically evaluated in human trials. All assays use characteristics of cell physiology to distinguish between viable and nonviable cells to quantify cell kill following exposure to a drug of interest. With few exceptions, drug doses used in the assays vary highly depending on tumor type and drug class, but all assays require drug exposures ranging from several-fold below physiologic relevance to several-fold above physiologic relevance. Although a variety of assays examine chemoresistance or chemosensitivity, only a few are commercially available. Examples of available assays are outlined below.

Methods Using Differential Staining/Dye Exclusion

Differential Staining Cytotoxicity Assay

The Differential Staining Cytotoxicity assay relies on dye exclusion of live cells after mechanical disaggregation of cells from surgical or biopsy specimens by centrifugation. Cells are then established in culture and treated with the drugs of interest at 3 dose levels: the middle (relevant) dose, which could be achieved in therapy; a 10-fold lower dose than the physiologically relevant dose; and a 10-fold higher dose. Exposure time ranges from 4 to 6 days; then cells are re-stained with fast green dye and counterstained with hematoxylin and eosin. The fast green dye is taken up by dead cells, and hematoxylin and eosin differentiate tumor cells from normal cells. The intact cell membrane of a live cell precludes staining with the green dye. Drug sensitivity is measured by the ratio of the number of live cells in the untreated controls.

EVA/PCD Assay

The EVA/PCD assay (<u>Rational Therapeutics</u>) relies on ex vivo analysis of programmed cell death, as measured by differential staining of cells after apoptotic and nonapoptotic cell death markers in tumor samples exposed to chemotherapeutic agents. Tumor specimens obtained through biopsy or surgical resection are disaggregated using DNase and collagenase IV to yield tumor clusters of the desired size (50-100 cell spheroids). Because these cells are not proliferated, these microaggregates are believed to approximate the human tumor microenvironment more closely. These cellular aggregates are treated with the dilutions of the chemotherapeutic drugs of interest and incubated for 3 days. After drug exposure is completed, a mixture of nigrosin B and fast green dye with glutaraldehyde-fixed avian erythrocytes is added to the cellular suspensions.^{2,} The samples are then agitated and cytospin-centrifuged and, after air drying, counterstained with hematoxylin and eosin. The endpoint of interest for this assay is cell death, as

assessed by observing the number of cells differentially stained due to changes in cellular membrane integrity.^{3,}

Fluorometric Microculture Cytotoxicity Assay

The fluorometric microculture cytotoxicity assay is another cell viability assay that relies on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate to fluorescein in viable cells.⁴, Cells from tumor specimens are incubated with cytotoxic drugs; drug resistance is associated with higher levels of fluorescence.

Methods Using Radioactive Precursors by Macromolecules in Viable Cells

Tritiated Thymine

Tritiated thymine incorporation measures uptake of tritiated thymidine by DNA of viable cells. Using proteases and DNase to disaggregate the tissue, samples are seeded into single cell suspension cultures on soft agar. They are then treated with the drug(s) of interest for 4 days. After 3 days, tritiated thymidine is added. After 24 hours of additional incubation, cells are lysed, and radioactivity is quantified and compared with a blank control consisting of cells that were treated with sodium azide. Only cells that are viable and proliferating will take up the radioactive thymidine. Therefore, there is an inverse relationship between the update of radioactivity and sensitivity of the cells to the agent(s) of interest.⁵

Extreme Drug Resistance Assay

The Oncotech Extreme Drug Resistance EDRÒ assay (Exiqon Diagnostics; no longer commercially available) is methodologically similar to the thymidine incorporation assay, using metabolic incorporation of tritiated thymidine to measure cell viability; however, single cell suspensions are not required, so the assay is simpler to perform.^{6,} Tritiated thymidine is added to the cultures of tumor cells, and uptake is quantified after various incubation times. Only live (resistant) cells will incorporate the compound. Therefore, the level of tritiated thymidine incorporation is directly related to chemoresistance. The interpretation of the results is unique in that resistance to the drugs is evaluated, as opposed to the evaluation of responsiveness. Tumors are considered to be highly resistant when thymidine incorporation is at least 1 standard deviation above reference samples.

Methods Quantifying Cell Viability Using Colorimetric Assay

Histoculture Drug Resistance Assay

The Histoculture Drug Resistance Assay HDRA (AntiCancer) evaluates cell growth after chemotherapy treatment based on a colorimetric assay that relies on mitochondrial dehydrogenases in living cells. ⁷ Drug sensitivity is evaluated by quantification of cell growth in the 3-dimensional collagen matrix. There is an inverse relationship between the drug sensitivity of the tumor and cell growth. Concentrations of drug and incubation times are not standardized and vary depending on drug combination and tumor type.

Methods Using Chemoluminescent Precursors by Macromolecules in Viable Cells

Adenosine Triphosphate Bioluminescence Assay

The ATP bioluminescence assay relies on the measurement of ATP to quantify the number of viable cells in a culture. Single cells or small aggregates are cultured and then exposed to drugs. Following incubation with the drug, the cells are lysed, and the cytoplasmic components are solubilized under conditions that will not allow enzymatic metabolism of ATP. Luciferin and firefly luciferase are added to the cell lysis product. This catalyzes the conversion of ATP to adenosine di- and monophosphate, and light is emitted proportionally to metabolic activity. This is quantified with a luminometer. From the measurement of light, the number of cells can be calculated. A decrease in ATP indicates drug sensitivity, whereas no loss of ATP suggests the tumor is resistant to the agent of interest.

ChemoFX Assay

The ChemoFX (Helomics, previously called Precision Therapeutics) assay also relies on quantifying ATP-based on chemoluminescence.^{8,9,} Cells must be grown in a monolayer rather than in a 3-dimensional matrix.

Summary

In vitro chemoresistance and chemosensitivity assays have been developed to provide information about the characteristics of an individual patient's malignancy to predict potential responsiveness of their cancer to specific drugs. Oncologists may sometimes use these assays to select treatment regimens for a patient. Several assays have been developed that differ concerning the processing of biologic samples and detection methods. However, all involve similar principles and share protocol components including (1) isolation of cells and establishment in an in vitro medium (sometimes in soft agar); (2) incubation of the cells with various drugs; (3) assessment of cell survival; and (4) interpretation of the result.

For individuals who have cancer who are initiating chemotherapy who receive chemoresistance assays, the evidence includes correlational observational studies. Relevant outcomes are overall survival (OS), disease-specific survival, test accuracy and validity, and quality of life. Some retrospective and prospective correlational studies have suggested that chemoresistance assays may be associated with chemotherapy response. However, prospective studies have not consistently demonstrated that chemoresistance assay results are associated with survival. Furthermore, no studies were identified that compared outcomes for patients managed using assay-directed therapy with those managed using physician-directed therapy. Large, randomized, prospective clinical studies comparing OS are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have cancer who are initiating chemotherapy who receive chemosensitivity assays, the evidence includes a randomized controlled trial, nonrandomized studies, and correlational observational studies. Relevant outcomes are OS, disease-specific survival, test accuracy and validity, and quality of life. The most direct evidence on the effectiveness of chemosensitivity assays in the management of patients with cancer comes from several studies comparing outcomes for patients managed using a chemosensitivity assay with those managed using standard care, including a randomized controlled trial. Although some improvements in tumor response were noted in the randomized trial, there were no differences in survival outcomes. One small nonrandomized study reported improved OS in patients receiving chemosensitivity-guided therapy compared with patients receiving standard chemotherapy. A number of retrospective and prospective studies of several different chemosensitivity assays have suggested that patients whose tumors have higher chemosensitivity have better outcomes. Currently, additional studies to determine whether the clinical use of in vitro chemosensitivity testing leads to improvements in OS are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy History

Data Data	Action
Date	Action
9/2020	BCBSA National medical policy review. Description, summary and references
	updated. Policy statements unchanged.
9/2019	BCBSA National medical policy review. Description, summary and references
	updated. Policy statements unchanged.
9/2018	BCBSA National medical policy review.
	CorrectChemo assay removed from the second policy statement; intent of
	statements unchanged. 9/1/2018
10/2017	New references added from BCBSA National medical policy.
8/2016	New references added from BCBSA National medical policy.
1/2016	Clarified coding information.
6/2015	BCBSA National medical policy review.
	Investigational indications clarified. Effective 6/1/2015.
7/2014	New references added from BCBSA National medical policy.
5/2013	New references from BCBSA National medical policy.
11/2011-4/2012	Medical policy ICD 10 remediation: Formatting, editing and coding updates.
	No changes to policy statements.
8/1/2011	Reviewed- Medical Policy Group– Hematology and Oncology
	No changes to policy statements.
12/1/2010	New policy describing ongoing non-coverage.

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use

Managed Care Guidelines

Indemnity/PPO Guidelines

Clinical Exception Process

Medical Technology Assessment Guidelines

References

- Bird MC, Godwin VA, Antrobus JH, et al. Comparison of in vitro drug sensitivity by the differential staining cytotoxicity (DiSC) and colony-forming assays. Br J Cancer. Apr 1987; 55(4): 429-31. PMID 3580265
- 2. Nagourney RA, Blitzer JB, Shuman RL, et al. Functional profiling to select chemotherapy in untreated, advanced or metastatic non-small cell lung cancer. Anticancer Res. Oct 2012; 32(10): 4453-60. PMID 23060572
- Nagourney RA. Ex vivo programmed cell death and the prediction of response to chemotherapy. Curr Treat Options Oncol. Mar 2006; 7(2): 103-10. PMID 16455021
- Csoka K, Larsson R, Tholander B, et al. Cytotoxic drug sensitivity testing of tumor cells from patients with ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA). Gynecol Oncol. Aug 1994; 54(2): 163-70. PMID 7520407
- 5. Yung WK. In vitro chemosensitivity testing and its clinical application in human gliomas. Neurosurg Rev. 1989; 12(3): 197-203. PMID 2682352
- Kern DH, Weisenthal LM. Highly specific prediction of antineoplastic drug resistance with an in vitro assay using suprapharmacologic drug exposures. J Natl Cancer Inst. Apr 04 1990; 82(7): 582-8.
 PMID 2313735
- Anticancer Inc. Histoculture Drug Response Assay HDRA. n.d.; http://www.anticancer.com/HDRA_ref.html. Accessed June 5, 2018.
- 8. Helomics. ChemoFx Chemoresponse Marker. n.d.; https://www.helomics.com/chemoresponse-patients. Accessed June 5, 2018.
- 9. Brower SL, Fensterer JE, Bush JE. The ChemoFx assay: an ex vivo chemosensitivity and resistance assay for predicting patient response to cancer chemotherapy. Methods Mol Biol. 2008; 414: 57-78. PMID 18175812
- Chemotherapy sensitivity and resistance assays. TEC Bull (Online). Jul 08 2002; 19(2): 1-5. PMID 12166470
- 11. Samson DJ, Seidenfeld J, Ziegler K, et al. Chemotherapy sensitivity and resistance assays: a systematic review. J Clin Oncol. Sep 01 2004; 22(17): 3618-30. PMID 15289487
- 12. Brown E, Markman M. Tumor chemosensitivity and chemoresistance assays. Cancer. Mar 15 1996; 77(6): 1020-5. PMID 8635118
- 13. Eltabbakh GH, Piver MS, Hempling RE, et al. Correlation between extreme drug resistance assay and response to primary paclitaxel and cisplatin in patients with epithelial ovarian cancer. Gynecol Oncol. Sep 1998; 70(3): 392-7. PMID 9790793
- 14. Eltabbakh GH. Extreme drug resistance assay and response to chemotherapy in patients with primary peritoneal carcinoma. J Surg Oncol. Mar 2000; 73(3): 148-52. PMID 10738268
- 15. Mehta RS, Bornstein R, Yu IR, et al. Breast cancer survival and in vitro tumor response in the extreme drug resistance assay. Breast Cancer Res Treat. Apr 2001; 66(3): 225-37. PMID 11510694
- 16. Holloway RW, Mehta RS, Finkler NJ, et al. Association between in vitro platinum resistance in the EDR assay and clinical outcomes for ovarian cancer patients. Gynecol Oncol. Oct 2002; 87(1): 8-16. PMID 12468336
- 17. Ellis RJ, Fabian CJ, Kimler BF, et al. Factors associated with success of the extreme drug resistance assay in primary breast cancer specimens. Breast Cancer Res Treat. Jan 2002; 71(2): 95-102. PMID 11881914
- Loizzi V, Chan JK, Osann K, et al. Survival outcomes in patients with recurrent ovarian cancer who were treated with chemoresistance assay-guided chemotherapy. Am J Obstet Gynecol. Nov 2003; 189(5): 1301-7. PMID 14634558
- 19. Tiersten AD, Moon J, Smith HO, et al. Chemotherapy resistance as a predictor of progression-free survival in ovarian cancer patients treated with neoadjuvant chemotherapy and surgical cytoreduction

- followed by intraperitoneal chemotherapy: a Southwest Oncology Group Study. Oncology. 2009; 77(6): 395-9. PMID 20130422
- 20. Matsuo K, Eno ML, Im DD, et al. Clinical relevance of extent of extreme drug resistance in epithelial ovarian carcinoma. Gynecol Oncol. Jan 2010; 116(1): 61-5. PMID 19840886
- 21. Matsuo K, Bond VK, Im DD, et al. Prediction of Chemotherapy Response With Platinum and Taxane in the Advanced Stage of Ovarian and Uterine Carcinosarcoma: A Clinical Implication of In vitro Drug Resistance Assay. Am J Clin Oncol. Aug 2010; 33(4): 358-63. PMID 19875949
- 22. Matsuo K, Eno ML, Im DD, et al. Chemotherapy time interval and development of platinum and taxane resistance in ovarian, fallopian, and peritoneal carcinomas. Arch Gynecol Obstet. Feb 2010; 281(2): 325-8. PMID 19455347
- 23. Matsuo K, Bond VK, Eno ML, et al. Low drug resistance to both platinum and taxane chemotherapy on an in vitro drug resistance assay predicts improved survival in patients with advanced epithelial ovarian, fallopian and peritoneal cancer. Int J Cancer. Dec 01 2009; 125(11): 2721-7. PMID 19530239
- 24. Karam AK, Chiang JW, Fung E, et al. Extreme drug resistance assay results do not influence survival in women with epithelial ovarian cancer. Gynecol Oncol. Aug 2009; 114(2): 246-52. PMID 19500821
- 25. Hetland TE, Kaern J, Skrede M, et al. Predicting platinum resistance in primary advanced ovarian cancer patients with an in vitro resistance index. Cancer Chemother Pharmacol. May 2012; 69(5): 1307-14. PMID 22302409
- 26. Cortazar P, Gazdar AF, Woods E, et al. Survival of patients with limited-stage small cell lung cancer treated with individualized chemotherapy selected by in vitro drug sensitivity testing. Clin Cancer Res. May 1997; 3(5): 741-7. PMID 9815744
- 27. Gazdar AF, Steinberg SM, Russell EK, et al. Correlation of in vitro drug-sensitivity testing results with response to chemotherapy and survival in extensive-stage small cell lung cancer: a prospective clinical trial. J Natl Cancer Inst. Jan 17 1990; 82(2): 117-24. PMID 2152944
- 28. Kurbacher CM, Cree IA, Bruckner HW, et al. Use of an ex vivo ATP luminescence assay to direct chemotherapy for recurrent ovarian cancer. Anticancer Drugs. Jan 1998; 9(1): 51-7. PMID 9491792
- 29. Shaw GL, Gazdar AF, Phelps R, et al. Individualized chemotherapy for patients with non-small cell lung cancer determined by prospective identification of neuroendocrine markers and in vitro drug sensitivity testing. Cancer Res. Nov 01 1993; 53(21): 5181-7. PMID 8221655
- 30. Shaw GL, Gazdar AF, Phelps R, et al. Correlation of in vitro drug sensitivity testing results with response to chemotherapy and survival: comparison of non-small cell lung cancer and small cell lung cancer. J Cell Biochem Suppl. 1996; 24: 173-85. PMID 8806100
- 31. Von Hoff DD, Kronmal R, Salmon SE, et al. A Southwest Oncology Group study on the use of a human tumor cloning assay for predicting response in patients with ovarian cancer. Cancer. Jan 01 1991: 67(1): 20-7. PMID 1985717
- 32. Von Hoff DD, Sandbach JF, Clark GM, et al. Selection of cancer chemotherapy for a patient by an in vitro assay versus a clinician. J Natl Cancer Inst. Jan 17 1990; 82(2): 110-6. PMID 2403593
- Wilbur DW, Camacho ES, Hilliard DA, et al. Chemotherapy of non-small cell lung carcinoma guided by an in vitro drug resistance assay measuring total tumour cell kill. Br J Cancer. Jan 1992; 65(1): 27-32. PMID 1310250
- 34. Xu JM, Song ST, Tang ZM, et al. Predictive chemotherapy of advanced breast cancer directed by MTT assay in vitro. Breast Cancer Res Treat. Jan 1999; 53(1): 77-85. PMID 10206075
- 35. Kim JH, Lee KW, Kim YH, et al. Individualized tumor response testing for prediction of response to Paclitaxel and Cisplatin chemotherapy in patients with advanced gastric cancer. J Korean Med Sci. May 2010; 25(5): 684-90. PMID 20436702
- 36. Rutherford T, Orr J, Grendys E, et al. A prospective study evaluating the clinical relevance of a chemoresponse assay for treatment of patients with persistent or recurrent ovarian cancer. Gynecol Oncol. Nov 2013; 131(2): 362-7. PMID 23954900
- 37. Tian C, Sargent DJ, Krivak TC, et al. Evaluation of a chemoresponse assay as a predictive marker in the treatment of recurrent ovarian cancer: further analysis of a prospective study. Br J Cancer. Aug 26 2014; 111(5): 843-50. PMID 25003664
- 38. Krivak TC, Lele S, Richard S, et al. A chemoresponse assay for prediction of platinum resistance in primary ovarian cancer. Am J Obstet Gynecol. Jul 2014; 211(1): 68.e1-8. PMID 24530815
- 39. Salom E, Penalver M, Homesley H, et al. Correlation of pretreatment drug induced apoptosis in ovarian cancer cells with patient survival and clinical response. J Transl Med. Aug 08 2012; 10: 162. PMID 22873358

- 40. Jung PS, Kim DY, Kim MB, et al. Progression-free survival is accurately predicted in patients treated with chemotherapy for epithelial ovarian cancer by the histoculture drug response assay in a prospective correlative clinical trial at a single institution. Anticancer Res. Mar 2013; 33(3): 1029-34. PMID 23482777
- 41. Zhang J, Li H. Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate-tumor chemosensitivity assay. Oncol Lett. May 2015; 9(5): 2374-2380. PMID 26137074
- 42. Tanigawa N, Yamaue H, Ohyama S, et al. Exploratory phase II trial in a multicenter setting to evaluate the clinical value of a chemosensitivity test in patients with gastric cancer (JACCRO-GC 04, Kubota memorial trial). Gastric Cancer. Apr 2016; 19(2): 350-360. PMID 26385385
- 43. Gallion H, Christopherson WA, Coleman RL, et al. Progression-free interval in ovarian cancer and predictive value of an ex vivo chemoresponse assay. Int J Gynecol Cancer. Jan-Feb 2006; 16(1): 194-201. PMID 16445633
- 44. Herzog TJ, Krivak TC, Fader AN, et al. Chemosensitivity testing with ChemoFx and overall survival in primary ovarian cancer. Am J Obstet Gynecol. Jul 2010; 203(1): 68.e1-6. PMID 20227055
- 45. Grigsby PW, Zighelboim I, Powell MA, et al. In vitro chemoresponse to cisplatin and outcomes in cervical cancer. Gynecol Oncol. Jul 2013; 130(1): 188-91. PMID 23583416
- 46. Lee JH, Um JW, Lee JH, et al. Can immunohistochemistry of multidrug-resistant proteins replace the histoculture drug response assay in colorectal adenocarcinomas?. Hepatogastroenterology. Jun 2012; 59(116): 1075-8. PMID 22580657
- 47. Strickland SA, Raptis A, Hallquist A, et al. Correlation of the microculture-kinetic drug-induced apoptosis assay with patient outcomes in initial treatment of adult acute myelocytic leukemia. Leuk Lymphoma. Mar 2013; 54(3): 528-34. PMID 22924433
- 48. von Heideman A, Tholander B, Grundmark B, et al. Chemotherapeutic drug sensitivity of primary cultures of epithelial ovarian cancer cells from patients in relation to tumour characteristics and therapeutic outcome. Acta Oncol. Feb 2014; 53(2): 242-50. PMID 23713890
- 49. Bosserman L, Rogers K, Willis C, et al. Application of a drug-induced apoptosis assay to identify treatment strategies in recurrent or metastatic breast cancer. PLoS ONE. 2015; 10(5): e0122609. PMID 26024531
- Ugurel S, Schadendorf D, Pfohler C, et al. In vitro drug sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma: a multicenter phase II trial of the Dermatologic Cooperative Oncology Group. Clin Cancer Res. Sep 15 2006; 12(18): 5454-63. PMID 17000680
- 51. Moon YW, Sohn JH, Kim YT, et al. Adenosine triphosphate-based chemotherapy response assay (ATP-CRA)-guided versus empirical chemotherapy in unresectable non-small cell lung cancer. Anticancer Res. Oct 2009: 29(10): 4243-9. PMID 19846981
- 52. Iwahashi M, Nakamori M, Nakamura M, et al. Individualized adjuvant chemotherapy guided by chemosensitivity test sequential to extended surgery for advanced gastric cancer. Anticancer Res. Sep-Oct 2005; 25(5): 3453-9. PMID 16101163
- 53. Cree IA, Kurbacher CM, Lamont A, et al. A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician's choice in patients with recurrent platinum-resistant ovarian cancer. Anticancer Drugs. Oct 2007; 18(9): 1093-101. PMID 17704660
- 54. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Ovarian Cancer Including Fallopian Tube Cancer and Primary Peritoneal Cancer. Version 1.2020. https://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf. Accessed July 6, 2020.
- 55. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Gastric Cancer. Version 2.2020. https://www.nccn.org/professionals/physician_gls/pdf/gastric.pdf. Accessed July 5, 2020.
- 56. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Breast Cancer. Ver. 4.2020. Published May 8, 2020. Accessed July 6, 2020. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
- 57. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Cutaneous Melanoma. Ver. 3.2020. Published May 20, 2020. Accessed July 5, 2020. https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf
- 58. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Non-Small Cell Lung Cancer. Ver. 6.2020. Published June 15, 2020. Accessed July 5, 2020. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf

- 59. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Uterine Neoplasms. Version 1.2020.
 - https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf. Accessed July 5, 2020.
- 60. Burstein HJ, Mangu PB, Somerfield MR, et al. American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J Clin Oncol. Aug 20 2011; 29(24): 3328-30. PMID 21788567