

Blue Cross Blue Shield of Massachusetts is an Independent Licenses of the Blue Cross and Blue Shield Association

Medical Policy

Hematopoietic Cell Transplantation for CNS Embryonal Tumors and Ependymoma

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 205

BCBSA Reference Number: 8.01.28 (For Plan internal use only)

NCD/LCD: NA

Related Policies

Hematopoietic Cell Transplantation for Solid Tumors of Childhood, #208

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

EMBRYONAL TUMORS OF THE CENTRAL NERVOUS SYSTEM

Autologous Hematopoietic Cell Transplantation

Autologous hematopoietic cell transplantation may be considered <u>MEDICALLY NECESSARY</u> as consolidation therapy for previously untreated embryonal tumors of the central nervous system (CNS) that show partial or complete response to induction chemotherapy, or stable disease after induction therapy.

Autologous hematopoietic cell transplantation may be <u>MEDICALLY NECESSARY</u> to treat recurrent embryonal tumors of the CNS.

Tandem autologous hematopoietic cell transplantation is <u>INVESTIGATIONAL</u> to treat embryonal tumors of the CNS.

Allogeneic Hematopoietic Cell Transplantation

Allogeneic hematopoietic cell transplantation is **INVESTIGATIONAL** to treat embryonal tumors of the CNS.

EPENDYMOMA

Autologous, tandem autologous, and allogeneic hematopoietic cell transplantation is **INVESTIGATIONAL** to treat ependymoma.

Prior Authorization Information

Inpatient

• For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

Outpatient

• For services described in this policy, see below for products where prior authorization <u>might be</u> required if the procedure is performed outpatient.

	Outpatient
Commercial Managed Care (HMO and POS)	Prior authorization is required .
Commercial PPO and Indemnity	Prior authorization is required .
Medicare HMO Blue SM	Prior authorization is required .
Medicare PPO Blue SM	Prior authorization is required .

Requesting Prior Authorization Using Authorization Manager

Providers will need to use <u>Authorization Manager</u> to submit initial authorization requests for services. Authorization Manager, available 24/7, is the quickest way to review authorization requirements, request authorizations, submit clinical documentation, check existing case status, and view/print the decision letter. For commercial members, the requests must meet medical policy guidelines.

To ensure the service request is processed accurately and quickly:

- Enter the facility's NPI or provider ID for where services are being performed.
- Enter the appropriate surgeon's NPI or provider ID as the servicing provider, *not* the billing group.

Authorization Manager Resources

Refer to our Authorization Manager page for tips, guides, and video demonstrations.

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above <u>medical necessity criteria MUST</u> be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT codes

CPT codes:	Code Description

HCPCS Codes

HCPCS codes:	Code Description
S2150	Bone marrow or blood-derived peripheral stem-cell harvesting and transplantation,
	allogeneic or autologous, including pheresis, high-dose chemotherapy, and the
	number of days of post-transplant care in the global definition (including drugs;
	hospitalization; medical surgical, diagnostic and emergency services)

ICD-10 Procedure Codes

ICD-10-PCS	
procedure	
codes:	Code Description
30233G0	Transfusion of Autologous Bone Marrow into Peripheral Vein, Percutaneous Approach
30233X0	Transfusion of Autologous Cord Blood Stem Cells into Peripheral Vein,
0020070	Percutaneous Approach
202221/0	Transfusion of Autologous Hematopoietic Stem Cells into Peripheral Vein,
30233Y0	Percutaneous Approach
30243G0	Transfusion of Autologous Bone Marrow into Central Vein, Percutaneous Approach
20242V0	Transfusion of Autologous Cord Blood Stem Cells into Central Vein, Percutaneous
30243X0	Approach
30243Y0	Transfusion of Autologous Hematopoietic Stem Cells into Central Vein,
	Percutaneous Approach
30263G0	Transfusion of Autologous Bone Marrow into Central Artery, Percutaneous Approach
3E03305	Introduction of Other Antineoplastic into Peripheral Vein, Percutaneous Approach
3E04305	Introduction of Other Antineoplastic into Central Vein, Percutaneous Approach
3E05305	Introduction of Other Antineoplastic into Peripheral Artery, Percutaneous Approach
3E06305	Introduction of Other Antineoplastic into Central Artery, Percutaneous Approach

Description

Central Nervous System Embryonal Tumors

Classification of brain tumors is based on both histopathologic characteristics of the tumor and location in the brain. Central nervous system (CNS) embryonal tumors are more common in children and are the most common brain tumor in childhood. Medulloblastomas account for 20% of all childhood CNS tumors.

Recurrent childhood CNS embryonal tumors are not uncommon and, depending on which type of treatment the patient initially received, autologous hematopoietic cell transplantation (HCT) may be an option. For patients who receive high-dose chemotherapy and autologous HCT for recurrent embryonal tumors, the objective response is 50% to 75%; however, long-term disease control is obtained in fewer than 30% of patients and is primarily seen in patients with a first relapse of localized disease at the time of the relapse.¹

Ependymoma

Ependymoma is a neuroepithelial tumor that arises from the ependymal lining cell of the ventricles and is, therefore, usually contiguous with the ventricular system. An ependymoma tumor typically arises intracranially in children, while in adults a spinal cord location is more common. Ependymomas have access to the cerebrospinal fluid and may spread throughout the entire neuroaxis. Ependymomas are distinct from ependymoblastomas due to their more mature histologic differentiation.

Hematopoietic Cell Transplantation

Hematopoietic cell transplantation is a procedure in which hematopoietic stem cells are intravenously infused to restore bone marrow and immune function in cancer patients who receive bone marrow-toxic doses of cytotoxic drugs with or without whole-body radiotherapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous HCT) or a donor (allogeneic HCT [allo-HCT]). These cells can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates.

Immunologic compatibility between infused hematopoietic stem cells and the recipient is not an issue in autologous HCT. In allogeneic stem cell transplantation, immunologic compatibility between donor and patient is a critical factor for achieving a successful outcome. Compatibility is established by typing of human leukocyte antigens (HLA) using cellular, serologic, or molecular techniques. HLA refers to the gene complex expressed at the HLA-A, -B, and -DR (antigen-D related) loci on each arm of chromosome 6. An acceptable donor will match the patient at all or most of the HLA loci.

Conditioning for Hematopoietic Cell Transplantation

Conventional Conditioning

The conventional ("classical") practice of allo-HCT involves administration of cytotoxic agents (e.g., cyclophosphamide, busulfan) with or without total body irradiation at doses sufficient to cause bone marrow ablation in the recipient. The beneficial treatment effect of this procedure is due to a combination of the initial eradication of malignant cells and subsequent graft-versus-malignancy effect mediated by non-self-immunologic effector cells. While the slower graft-versus-malignancy effect is considered the potentially curative component, it may be overwhelmed by existing disease in the absence of pretransplant conditioning. Intense conditioning regimens are limited to patients who are sufficiently medically fit to tolerate substantial adverse effects. These include opportunistic infections secondary to loss of endogenous bone marrow function and organ damage or failure caused by cytotoxic drugs. Subsequent to graft infusion in allo-HCT, immunosuppressant drugs are required to minimize graft rejection and graft-versus-host disease (GVHD), which increases susceptibility to opportunistic infections.

The success of autologous HCT is predicated on the potential of cytotoxic chemotherapy, with or without radiotherapy, to eradicate cancerous cells from the blood and bone marrow. This permits subsequent engraftment and repopulation of the bone marrow with presumably normal hematopoietic stem cells obtained from the patient before undergoing bone marrow ablation. Therefore, autologous HCT is typically performed as consolidation therapy when the patient's disease is in complete remission. Patients who undergo autologous HCT are also susceptible to chemotherapy-related toxicities and opportunistic infections before engraftment, but not GVHD.

Reduced-Intensity Conditioning Allogeneic Hematopoietic Cell Transplantation

Reduced-intensity conditioning (RIC) refers to the pretransplant use of lower doses of cytotoxic drugs or less intense regimens of radiotherapy than are used in traditional full-dose myeloablative conditioning treatments. Although the definition of RIC is variable, with numerous versions employed, all regimens seek to balance the competing effects of relapse due to residual disease and non-relapse mortality. The goal of RIC is to reduce disease burden and to minimize associated treatment-related morbidity and non-relapse mortality in the period during which the beneficial graft-versus-malignancy effect of allogeneic transplantation develops. Reduced-intensity conditioning regimens range from nearly total myeloablative to minimally myeloablative with lymphoablation, with intensity tailored to specific diseases and patient condition. Patients who undergo RIC with allo-HCT initially demonstrate donor cell engraftment and bone marrow mixed chimerism. Most will subsequently convert to full-donor chimerism. In this review, the term reduced-intensity conditioning will refer to all conditioning regimens intended to be nonmyeloablative.

Autologous HCT allows for the escalation of chemotherapy doses above those limited by myeloablation and has been tried in patients with high-risk brain tumors in an attempt to eradicate residual tumor cells and improve cure rates. The use of allo-HCT for solid tumors does not rely on the escalation of chemotherapy intensity and tumor reduction but rather on a graft-versus-tumor effect. Allo-HCT is not commonly used in solid tumors and may be used if an autologous source cannot be cleared of a tumor or cannot be harvested.

Summary

High-dose chemotherapy with hematopoietic cell transplantation (HCT) has been investigated as a possible therapy in pediatric patients with brain tumors, particularly in those with high-risk disease. The use of HCT has allowed for a reduction in the dose of radiation needed to treat both average- and high-risk disease with a goal of preserving the quality of life and intellectual functioning.

For individuals who have newly diagnosed central nervous system (CNS) embryonal tumors who receive autologous hematopoietic cell transplantation (HCT), the evidence includes prospective and retrospective studies. Relevant outcomes are overall survival (OS), disease-specific survival (DSS), and treatment-related mortality and morbidity. For pediatric CNS embryonal tumors, an important consideration is whether the use of HCT may allow for a reduction in radiation dose. Data from single-arm studies using high-dose chemotherapy with autologous HCT to treat newly diagnosed CNS embryonal tumors have shown comparable or improved survival (both event-free survival [EFS] and OS) compared with historical

controls treated with conventional therapy, with or without radiotherapy, particularly in patients with a disease considered high-risk. In a retrospective comparative study, survival in patients receiving high-dose chemotherapy with HCT and delayed craniospinal irradiation (CSI) was comparable with survival in those receiving upfront CSI. Overall, data from these observational studies have suggested HCT may allow reduced doses of CSI without worsening survival outcomes. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have recurrent or relapsed CNS embryonal tumors who receive autologous HCT, the evidence includes prospective and retrospective single-arm studies and a systematic review of these studies. Relevant outcomes are OS, DSS, and treatment-related mortality and morbidity. For recurrent/relapsed CNS embryonal tumors, survival outcomes after HCT vary, and survival is generally very poor for tumors other than medulloblastoma. Data from some single-arm studies using autologous HCT to treat recurrent CNS embryonal tumors have shown comparable or improved survival compared with historical controls treated with conventional therapy for certain patients. The results of a 2012 systematic review of observational studies in patients with relapsed supratentorial primitive neuroectodermal tumor (PNET) suggested that a subgroup of infants with the chemosensitive disease might benefit from autologous HCT, achieving survival without the use of radiotherapy, whereas outcomes in older children and/or in the pineal location are poor with this modality. However, a relatively large prospective multicenter study has reported that HCT was not associated with improved survival outcomes in patients who had a good response to therapy. Overall, data from these single-arm studies have suggested HCT may be associated with improved survival outcomes in select patients, although data for some tumor types are limited (eg, atypical teratoid/rhabdoid tumors). The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have CNS embryonal tumors who receive tandem autologous HCT, the evidence includes prospective and retrospective single-arm studies. Relevant outcomes are OS, DSS, and treatment-related mortality and morbidity. Less evidence specifically addresses the use of tandem autologous HCT for CNS embryonal tumors. The available single-arm studies are very small but appear to report OS and EFS rates comparable with single autologous HCT. Tandem transplants might allow reduced doses of craniospinal irradiation, with the goal of avoiding long-term radiation damage. However, most studies used standard-dose irradiation, making the relative benefit of tandem autologous HCT uncertain. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have CNS embryonal tumors who receive allogeneic HCT, the evidence includes case reports. Relevant outcomes are OS, DSS, and treatment-related mortality and morbidity. The available evidence is limited. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have ependymoma who receive autologous HCT, the evidence includes relatively small case series. Relevant outcomes are OS, DSS, and treatment-related mortality and morbidity. The available case series do not report higher survival rates for patients with ependymoma treated with HCT compared with standard therapies. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

Date	Action
3/2025	Annual policy review. References updated. Policy statements unchanged.
3/2024	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
9/2023	Policy clarified to include prior authorization requests using Authorization Manager.
3/2023	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.

0/0000	
2/2022	Annual policy review. Description, summary, and references updated. Policy
- /	statements unchanged.
3/2021	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
10/2020	Clarified coding information
4/2020	Bone marrow harvesting codes were removed. Outpatient prior authorization is not
	required.
3/2020	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
3/2019	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
1/2019	Outpatient prior authorization is required for all commercial products including
2/22/2	Medicare Advantage. Effective 1/1/2019.
2/2018	Annual policy review. New references added. Clarified coding information.
3/2017	Annual policy review. Title changed. New references added. 3/1/2017
3/2016	Annual policy review. New references added
9/2015	Clarified coding information.
12/2014	Annual policy review. New references added.
6/2014	Updated Coding section with ICD10 procedure and diagnosis codes, effective
	10/2015.
2/2014	Annual policy review. New references added.
12/2012	Updated to add new CPT code 38243.
11/2011-4/2012	Medical policy ICD 10 remediation: Formatting, editing and coding updates. No
	changes to policy statements.
7/2011	Reviewed - Medical Policy Group - Hematology and Oncology. No changes to policy
	statements.
5/2011	Reviewed - Medical Policy Group - Pediatrics and Endocrinology. No changes to
	policy statements.
9/2010	Reviewed - Medical Policy Group - Hematology and Oncology. No changes to policy
	statements.
8/1/2010	Medical Policy 205 effective 8/1/10.

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use

Managed Care Guidelines

Indemnity/PPO Guidelines

Clinical Exception Process

Medical Technology Assessment Guidelines

References

- 1. Mueller S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics. Jul 2009; 6(3): 570-86. PMID 19560746
- 2. Fangusaro J, Finlay J, Sposto R, et al. Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): report of the Head Start I and II experience. Pediatr Blood Cancer. Feb 2008; 50(2): 312-8. PMID 17668858
- 3. National Cancer Institute Physician Data Query (PDQ). Childhood Medulloblastoma and Other Central Nervous System Embryonal Tumors Treatment. Updated December 2, 2024. http://www.cancer.gov/cancertopics/pdq/treatment/childCNSembryonal/healthprofessional. Accessed December 9, 2024.
- 4. Odagiri K, Omura M, Hata M, et al. Treatment outcomes and late toxicities in patients with embryonal central nervous system tumors. Radiat Oncol. Sep 11 2014; 9: 201. PMID 25209395

- 5. Alsultan A, Alharbi M, Al-Dandan S, et al. High-dose Chemotherapy With Autologous Stem Cell Rescue in Saudi Children Less Than 3 Years of Age With Embryonal Brain Tumors. J Pediatr Hematol Oncol. Apr 2015; 37(3): 204-8. PMID 25551668
- 6. Raleigh DR, Tomlin B, Buono BD, et al. Survival after chemotherapy and stem cell transplant followed by delayed craniospinal irradiation is comparable to upfront craniospinal irradiation in pediatric embryonal brain tumor patients. J Neurooncol. Jan 2017; 131(2): 359-368. PMID 27778212
- 7. Chintagumpala M, Hassall T, Palmer S, et al. A pilot study of risk-adapted radiotherapy and chemotherapy in patients with supratentorial PNET. Neuro Oncol. Feb 2009; 11(1): 33-40. PMID 18796696
- 8. Massimino M, Gandola L, Biassoni V, et al. Evolving of therapeutic strategies for CNS-PNET. Pediatr Blood Cancer. Dec 2013; 60(12): 2031-5. PMID 23852767
- 9. Lester RA, Brown LC, Eckel LJ, et al. Clinical outcomes of children and adults with central nervous system primitive neuroectodermal tumor. J Neurooncol. Nov 2014; 120(2): 371-9. PMID 25115737
- Dhall G, Grodman H, Ji L, et al. Outcome of children less than three years old at diagnosis with nonmetastatic medulloblastoma treated with chemotherapy on the "Head Start" I and II protocols. Pediatr Blood Cancer. Jun 2008; 50(6): 1169-75. PMID 18293379
- 11. Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. Oct 2006; 7(10): 813-20. PMID 17012043
- 12. Bergthold G, El Kababri M, Varlet P, et al. High-dose busulfan-thiotepa with autologous stem cell transplantation followed by posterior fossa irradiation in young children with classical or incompletely resected medulloblastoma. Pediatr Blood Cancer. May 2014; 61(5): 907-12. PMID 24470384
- 13. Dufour C, Foulon S, Geoffray A, et al. Prognostic relevance of clinical and molecular risk factors in children with high-risk medulloblastoma treated in the phase II trial PNET HR+5. Neuro Oncol. Jul 01 2021; 23(7): 1163-1172. PMID 33377141
- 14. Zhang M, Liu C, Zhou H, et al. Meta of classical chemotherapy compared with high-dose chemotherapy and autologous stem cell rescue in newly diagnosed medulloblastoma after radiotherapy. Medicine (Baltimore). Jul 29 2022; 101(30): e29372. PMID 35905255
- 15. Reddy AT, Strother DR, Judkins AR, et al. Efficacy of High-Dose Chemotherapy and Three-Dimensional Conformal Radiation for Atypical Teratoid/Rhabdoid Tumor: A Report From the Children's Oncology Group Trial ACNS0333. J Clin Oncol. Apr 10 2020; 38(11): 1175-1185. PMID 32105509
- 16. Geyer JR, Sposto R, Jennings M, et al. Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children's Cancer Group. J Clin Oncol. Oct 20 2005; 23(30): 7621-31. PMID 16234523
- 17. Lee JY, Kim IK, Phi JH, et al. Atypical teratoid/rhabdoid tumors: the need for more active therapeutic measures in younger patients. J Neurooncol. Apr 2012; 107(2): 413-9. PMID 22134767
- 18. Raghuram CP, Moreno L, Zacharoulis S. Is there a role for high dose chemotherapy with hematopoietic stem cell rescue in patients with relapsed supratentorial PNET?. J Neurooncol. Feb 2012; 106(3): 441-7. PMID 21850536
- 19. Dunkel IJ, Gardner SL, Garvin JH, et al. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro Oncol. Mar 2010; 12(3): 297-303. PMID 20167818
- 20. Dunkel IJ, Boyett JM, Yates A, et al. High-dose carboplatin, thiotepa, and etoposide with autologous stem-cell rescue for patients with recurrent medulloblastoma. Children's Cancer Group. J Clin Oncol. Jan 1998; 16(1): 222-8. PMID 9440746
- 21. Grodman H, Wolfe L, Kretschmar C. Outcome of patients with recurrent medulloblastoma or central nervous system germinoma treated with low dose continuous intravenous etoposide along with doseintensive chemotherapy followed by autologous hematopoietic stem cell rescue. Pediatr Blood Cancer. Jul 2009; 53(1): 33-6. PMID 19326417
- 22. Kostaras X, Easaw JC. Management of recurrent medulloblastoma in adult patients: a systematic review and recommendations. J Neurooncol. Oct 2013; 115(1): 1-8. PMID 23877361
- 23. Bode U, Zimmermann M, Moser O, et al. Treatment of recurrent primitive neuroectodermal tumors (PNET) in children and adolescents with high-dose chemotherapy (HDC) and stem cell support: results of the HITREZ 97 multicentre trial. J Neurooncol. Dec 2014; 120(3): 635-42. PMID 25179451

- 24. Gill P, Litzow M, Buckner J, et al. High-dose chemotherapy with autologous stem cell transplantation in adults with recurrent embryonal tumors of the central nervous system. Cancer. Apr 15 2008; 112(8): 1805-11. PMID 18300237
- 25. Kim H, Kang HJ, Lee JW, et al. Irinotecan, vincristine, cisplatin, cyclophosphamide, and etoposide for refractory or relapsed medulloblastoma/PNET in pediatric patients. Childs Nerv Syst. Oct 2013; 29(10): 1851-8. PMID 23748464
- 26. Egan G, Cervone KA, Philips PC, et al. Phase I study of temozolomide in combination with thiotepa and carboplatin with autologous hematopoietic cell rescue in patients with malignant brain tumors with minimal residual disease. Bone Marrow Transplant. Apr 2016; 51(4): 542-5. PMID 26726947
- 27. Sung KW, Lim DH, Yi ES, et al. Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation for Atypical Teratoid/Rhabdoid Tumor. Cancer Res Treat. Oct 2016; 48(4): 1408-1419. PMID 27034140
- 28. Dufour C, Kieffer V, Varlet P, et al. Tandem high-dose chemotherapy and autologous stem cell rescue in children with newly diagnosed high-risk medulloblastoma or supratentorial primitive neuro-ectodermic tumors. Pediatr Blood Cancer. Aug 2014; 61(8): 1398-402. PMID 24664937
- 29. Sung KW, Lim DH, Son MH, et al. Reduced-dose craniospinal radiotherapy followed by tandem high-dose chemotherapy and autologous stem cell transplantation in patients with high-risk medulloblastoma. Neuro Oncol. Mar 2013; 15(3): 352-9. PMID 23258845
- 30. Friedrich C, von Bueren AO, von Hoff K, et al. Treatment of young children with CNS-primitive neuroectodermal tumors/pineoblastomas in the prospective multicenter trial HIT 2000 using different chemotherapy regimens and radiotherapy. Neuro Oncol. Feb 2013; 15(2): 224-34. PMID 23223339
- 31. Park ES, Sung KW, Baek HJ, et al. Tandem high-dose chemotherapy and autologous stem cell transplantation in young children with atypical teratoid/rhabdoid tumor of the central nervous system. J Korean Med Sci. Feb 2012; 27(2): 135-40. PMID 22323859
- 32. Sung KW, Yoo KH, Cho EJ, et al. High-dose chemotherapy and autologous stem cell rescue in children with newly diagnosed high-risk or relapsed medulloblastoma or supratentorial primitive neuroectodermal tumor. Pediatr Blood Cancer. Apr 2007; 48(4): 408-15. PMID 17066462
- 33. Lundberg JH, Weissman DE, Beatty PA, et al. Treatment of recurrent metastatic medulloblastoma with intensive chemotherapy and allogeneic bone marrow transplantation. J Neurooncol. Jun 1992; 13(2): 151-5. PMID 1432032
- 34. Matsuda Y, Hara J, Osugi Y, et al. Allogeneic peripheral stem cell transplantation using positively selected CD34+ cells from HLA-mismatched donors. Bone Marrow Transplant. Feb 1998; 21(4): 355-60. PMID 9509968
- 35. Secondino S, Pedrazzoli P, Schiavetto I, et al. Antitumor effect of allogeneic hematopoietic SCT in metastatic medulloblastoma. Bone Marrow Transplant. Jul 2008; 42(2): 131-3. PMID 18372908
- 36. Sung KW, Lim DH, Lee SH, et al. Tandem high-dose chemotherapy and autologous stem cell transplantation for anaplastic ependymoma in children younger than 3 years of age. J Neurooncol. Apr 2012; 107(2): 335-42. PMID 22081297
- 37. Mason WP, Goldman S, Yates AJ, et al. Survival following intensive chemotherapy with bone marrow reconstitution for children with recurrent intracranial ependymoma--a report of the Children's Cancer Group. J Neurooncol. Apr 1998; 37(2): 135-43. PMID 9524092
- 38. Grill J, Kalifa C, Doz F, et al. A high-dose busulfan-thiotepa combination followed by autologous bone marrow transplantation in childhood recurrent ependymoma. A phase-II study. Pediatr Neurosurg. Jul 1996; 25(1): 7-12. PMID 9055328
- 39. Zacharoulis S, Levy A, Chi SN, et al. Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer. Jul 2007; 49(1): 34-40. PMID 16874765
- 40. Majhail NS, Farnia SH, Carpenter PA, et al. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. Nov 2015; 21(11): 1863-1869. PMID 26256941
- 41. Kanate AS, Majhail NS, Savani BN, et al. Indications for Hematopoietic Cell Transplantation and Immune Effector Cell Therapy: Guidelines from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transplant. Jul 2020; 26(7): 1247-1256. PMID 32165328

42. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology: central nervous system cancers. Version 3.2024. http://www.nccn.org/professionals/physician_gls/PDF/cns.pdf. Accessed December 9, 2024.