Medical Policy
Hematopoietic Cell Transplantation for Acute Myeloid Leukemia

Table of Contents
- Policy: Commercial
- Coding Information
- Policy: Medicare
- Description
- Authorization Information
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 150
BCBSA Reference Number: 8.01.26 (For Plan internal use only)

Related Policies
None

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Allogeneic hematopoietic stem-cell transplantation (HCT) using a myeloablative conditioning regimen may be MEDICALLY NECESSARY to treat:

- Poor- to intermediate-risk acute myeloid leukemia (AML) in first complete remission (CR1); or
- AML that is refractory to standard induction chemotherapy but can be brought into CR with intensified induction chemotherapy; or
- AML that relapses following chemotherapy-induced CR1 but can be brought into CR2 or beyond with intensified induction chemotherapy; or
- AML in individuals, who have relapsed following a prior autologous (HCT) but can be brought into CR with intensified induction chemotherapy and are medically able to tolerate the procedure.

Primary refractory acute myeloid leukemia (AML) is defined as leukemia that does not achieve a complete remission after conventionally dosed (non-marrow ablative) chemotherapy.

Allogeneic (HCT) using a reduced-intensity conditioning regimen be MEDICALLY NECESSARY as a treatment of AML in individuals who are in complete marrow and extramedullary remission (CR1 or beyond), and who for medical reasons would be unable to tolerate a myeloablative conditioning regimen.

Autologous (HCT) may be MEDICALLY NECESSARY to treat AML in CR1 or beyond, or relapsed AML, if responsive to intensified induction chemotherapy in individuals who are not candidates for allogeneic HCT.
Allogeneic and autologous HCT are **INVESTIGATIONAL** in individuals not meeting any of the above criteria.

**Prior Authorization Information**

**Inpatient**
- For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

**Outpatient**
- For services described in this policy, see below for products where prior authorization **might be required** if the procedure is performed **outpatient**.

<table>
<thead>
<tr>
<th>Commercial Managed Care (HMO and POS)</th>
<th>Prior authorization is required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>Prior authorization is required.</td>
</tr>
</tbody>
</table>

**CPT Codes / HCPCS Codes / ICD Codes**

_Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member._

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

_The following codes are included below for informational purposes only; this is not an all-inclusive list._

The above **medical necessity criteria MUST** be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

**CPT Codes**

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38240</td>
<td>Hematopoietic progenitor cell (HPC); allogeneic transplantation per donor</td>
</tr>
<tr>
<td>38241</td>
<td>Hematopoietic progenitor cell (HPC); autologous transplantation</td>
</tr>
</tbody>
</table>

**HCPCS codes**

<table>
<thead>
<tr>
<th>HCPCS codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2142</td>
<td>Cord blood derived stem-cell transplantation, allogeneic</td>
</tr>
<tr>
<td>S2150</td>
<td>Bone marrow or blood-derived peripheral stem-cell harvesting and transplantation, allogeneic or autologous, including pheresis, high-dose chemotherapy, and the number of days of post-transplant care in the global definition (including drugs; hospitalization; medical surgical, diagnostic and emergency services)</td>
</tr>
</tbody>
</table>

**ICD-10 Procedure Codes**

<table>
<thead>
<tr>
<th>ICD-10-PCS procedure codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30233G0</td>
<td>Transfusion of Autologous Bone Marrow into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td>30233Y0</td>
<td>Transfusion of Autologous Hematopoietic Stem Cells into Peripheral Vein, Percutaneous Approach</td>
</tr>
<tr>
<td>30243G0</td>
<td>Transfusion of Autologous Bone Marrow into Central Vein, Percutaneous Approach</td>
</tr>
</tbody>
</table>
Description

Treatment
Complete remission can be achieved initially using induction therapy, consisting of conventional doses of combination chemotherapy. A complete response is achieved in 60% to 80% of adults younger than 60 years of age and 40% to 60% in patients older than 60 years of age. However, the high incidence of disease relapse has prompted research into a variety of post-remission (consolidation) strategies, typically using high-dose chemotherapy with autologous hematopoietic cell transplantation (HCT) or high-dose or reduced-intensity chemotherapy with allogeneic HCT (allo-HCT). The 2 treatments, autologous HCT and allo-HCT, represent 2 different strategies. The first, autologous HCT, is a “rescue,” but not a therapeutic procedure; the second, allo-HCT, is a “rescue” plus a therapeutic procedure.

Hematopoietic Cell Transplantation
Hematopoietic cell transplantation is a procedure in which hematopoietic stem cells are intravenously infused to restore bone marrow and immune function in cancer patients who receive bone marrow-toxic doses of cytotoxic drugs with or without whole-body radiotherapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous HCT) or a donor (allo-HCT). These cells can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates.

Immunologic compatibility between infused hematopoietic stem cells and the recipient is not an issue in autologous HCT. In allo-HCT, immunologic compatibility between donor and patient is a critical factor for achieving a successful outcome. Compatibility is established by typing of human leukocyte antigens (HLA) using cellular, serologic, or molecular techniques. Human leukocyte antigen refers to the gene complex expressed at the HLA-A, -B, and -DR (antigen-D related) loci on each arm of chromosome 6. An acceptable donor will match the patient at all or most of the HLA loci.

Conditioning for Hematopoietic Cell Transplantation

Conventional Conditioning
The conventional (“classical”) practice of allo-HCT involves administration of cytotoxic agents (e.g., cyclophosphamide, busulfan) with or without total body irradiation at doses sufficient to cause bone marrow ablation in the recipient. The beneficial treatment effect of this procedure is due to a combination of the initial eradication of malignant cells and subsequent graft-versus-malignancy effect mediated by non-self-immunologic effector cells. While the slower graft-versus-malignancy effect is considered the potentially curative component, it may be overwhelmed by existing disease in the absence of pretransplant conditioning. Intense conditioning regimens are limited to patients who are sufficiently medically fit to tolerate substantial adverse effects. These include opportunistic infections secondary to loss of endogenous bone marrow function and organ damage or failure caused by cytotoxic drugs. Subsequent to graft infusion in allo-HCT, immunosuppressant drugs are required to minimize graft rejection and graft-versus-host disease (GVHD), which increases susceptibility to opportunistic infections.

The success of autologous HCT is predicated on the potential of cytotoxic chemotherapy, with or without radiotherapy, to eradicate cancerous cells from the blood and bone marrow. This permits subsequent engraftment and repopulation of the bone marrow with presumably normal hematopoietic stem cells obtained from the patient before undergoing bone marrow ablation. Therefore, autologous HCT is typically performed as consolidation therapy when the patient’s disease is in complete remission. Patients who undergo autologous HCT are also susceptible to chemotherapy-related toxicities and opportunistic infections before engraftment, but not GVHD.
Reduced-Intensity Conditioning Allogeneic Hematopoietic Cell Transplantation

Reduced-intensity conditioning (RIC) refers to the pretransplant use of lower doses of cytotoxic drugs or less intense regimens of radiotherapy than are used in traditional full-dose myeloablative conditioning (MAC) treatments. Although the definition of RIC is variable, with numerous versions employed, all regimens seek to balance the competing effects of relapse due to residual disease and nonrelapse mortality. The goal of RIC is to reduce disease burden and to minimize associated treatment-related morbidity and nonrelapse mortality in the period during which the beneficial graft-versus-malignancy effect of allogeneic transplantation develops. Reduced-intensity conditioning regimens range from nearly total myeloablative to minimally myeloablative with lymphoablation, with intensity tailored to specific diseases and patient condition. Patients who undergo RIC with allo-HCT initially demonstrate donor cell engraftment and bone marrow mixed chimerism. Most will subsequently convert to full-donor chimerism. In this review, the term RIC will refer to all conditioning regimens intended to be nonmyeloablative.

A 2015 review in the New England Journal of Medicine summarized advances in the classification of acute myeloid leukemia (AML), the genomics of AML and prognostic factors, and current and new treatments.¹ The National Comprehensive Cancer Network guidelines provide updated information on genetic markers for risk stratification, and additional recent reviews summarize information on novel therapies for AML.²³⁴

Summary

Description

Acute myeloid leukemia (AML) refers to leukemias that arise from a myeloid precursor in the bone marrow. There is a high incidence of relapse, which has prompted research into various post-remission strategies using either allogeneic (allo-) or autologous hematopoietic cell transplantation (HCT). Hematopoietic cell transplantation refers to a procedure that infuses hematopoietic stem cells to restore bone marrow function in cancer patients who receive bone marrow-toxic doses of drugs with or without whole-body radiotherapy.

Summary of Evidence

For individuals who have cytogenetic or molecular intermediate- or poor-risk acute myeloid leukemia (AML) in first complete remission (CR1) who receive allo-hematopoietic cell transplant (HCT) with myeloablative conditioning (MAC), the evidence includes systematic reviews, randomized controlled trials (RCTs), and matched cohort studies. Relevant outcomes are overall survival (OS) and disease-specific survival (DSS). The evidence has revealed that allo-HCT is better at improving OS and DSS rates in patients with AML in CR1 than conventional chemotherapy. All trials employed natural randomization based on donor availability and intention-to-treat analysis. Survival rates appear to be associated with the presence of minimal residual disease and risk category. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have AML refractory to standard induction chemotherapy who receive allo-HCT with MAC, the evidence includes retrospective data compiled from patients entered in phase 3 trials and registry data. Relevant outcomes are OS and DSS. The evidence would suggest that allo-HCT improves OS and DSS rates in patients who are refractory to induction chemotherapy better than conventional chemotherapy. While there are some limitations to the evidence, which include its retrospective nature, lack of rigorous randomization, and general pitfalls of registry data, these results may provide a clinically meaningful benefit for patients who do not have other treatment options. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have AML who relapsed after standard induction chemotherapy-induced CR1 who receive allo-HCT or autologous HCT with MAC, the evidence includes retrospective data compiled from patients entered in phase 3 trials and registry data. Relevant outcomes are OS and DSS. The evidence has shown that allo-HCT improves OS rates in patients with relapsed AML better than conventional chemotherapy. Limitations of the evidence include its retrospective nature, lack of rigorous randomization,
and pitfalls of registry data. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have cytogenetic or molecular intermediate- or poor-risk AML in CR1 and for medical reasons cannot tolerate MAC who receive allo-HCT with reduced-intensity conditioning (RIC), the evidence includes 2 RCTs, 3 meta-analyses, and other comparative and noncomparative studies. Relevant outcomes are OS, DSS, and treatment-related morbidity. The RCTs compared RIC with MAC and reported similar rates in nonrelapse mortality, relapse, and OS, though 1 of the trials was stopped prematurely due to slow accrual of patients. Two retrospective comparative studies found no difference in OS or leukemia-free survival between the conditioning regimens. It appears unlikely that additional comparative evidence will be generated. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have AML in CR1 or beyond without a suitable allo-HCT donor who receive autologous HCT, the evidence includes prospective cohort studies in which patients with an available sibling donor were offered allo-HCT (biologic randomization) with random assignment of all others to autologous HCT or chemotherapy (or no further treatment); and randomized trials comparing autologous HCT with chemotherapy in all patients. Relevant outcomes are OS and DSS. Compared with chemotherapy, patients undergoing autologous HCT experienced reduced relapse and improved disease-free survival (DFS) rates. The OS did not differ between the groups. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

**Policy History**

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2023</td>
<td>Annual policy review. Minor editorial refinements to policy statements; intent unchanged.</td>
</tr>
<tr>
<td>1/2023</td>
<td>Medicare information removed. See MP #132 Medicare Advantage Management for local coverage determination and national coverage determination reference.</td>
</tr>
<tr>
<td>2/2022</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>10/2020</td>
<td>Clarified coding information</td>
</tr>
<tr>
<td>4/2020</td>
<td>Bone marrow harvesting codes were removed. Outpatient prior authorization is not required.</td>
</tr>
<tr>
<td>6/2019</td>
<td>Annual policy review. Medically necessary statements revised to include patients who are not candidates for allogeneic HCT. Investigational statements added. Effective 6/1/2019.</td>
</tr>
<tr>
<td>10/2018</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>2/2018</td>
<td>Clarified coding information</td>
</tr>
<tr>
<td>3/2016</td>
<td>Annual policy review. New references added</td>
</tr>
<tr>
<td>10/2015</td>
<td>Annual policy review. Policy statements updated with clarifying information and to align with other HSCT policies, but the intent remains unchanged.</td>
</tr>
<tr>
<td>4/2015</td>
<td>Clarified coding information</td>
</tr>
<tr>
<td>10/2014</td>
<td>Annual policy review. New references added.</td>
</tr>
<tr>
<td>6/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes. Effective 10/2015.</td>
</tr>
<tr>
<td>12/2013</td>
<td>Annual policy review. New references added.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies
Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References


32. Valcárcel D, Martino R, Caballero D, et al. Sustained remissions of high-risk acute myeloid leukemia and myelodysplastic syndrome after reduced-intensity conditioning allogeneic hematopoietic


