Medical Policy
Optical Coherence Tomography of the Anterior Eye Segment

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 084
BCBSA Reference Number: 9.03.18 (For Plans internal use only)

Related Policies
- Ophthalmologic Techniques That Evaluate the Posterior Segment for Glaucoma, #053
- Endothelial Keratoplasty, #180
- Aqueous Shunts and Stents for Glaucoma, #223

Policy
Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity

Scanning computerized ophthalmic (eg, optical coherence tomography) imaging of the anterior eye segment is INVESTIGATIONAL.

Prior Authorization Information

Inpatient
- For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient.

Outpatient
- For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient.

<table>
<thead>
<tr>
<th>Outpatient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Managed Care (HMO and POS)</td>
<td>This is not a covered service.</td>
</tr>
<tr>
<td>Commercial PPO and Indemnity</td>
<td>This is not a covered service.</td>
</tr>
</tbody>
</table>

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member.

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.
The following codes are included below for informational purposes only; this is not an all-inclusive list.

The following CPT code is considered investigational for Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity:

CPT Codes

<table>
<thead>
<tr>
<th>CPT codes:</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>92132</td>
<td>Scanning computerized ophthalmic diagnostic imaging, anterior segment, with interpretation and report, unilateral or bilateral</td>
</tr>
</tbody>
</table>

Description

Optical Coherence Tomography

Optical coherence tomography is a noninvasive, high-resolution imaging method that can be used to visualize ocular structures. Optical coherence tomography creates an image of light reflected from the ocular structures. In this technique, a reflected light beam interacts with a reference light beam. The coherent (positive) interference between the 2 beams (reflected and reference) is measured by an interferometer, allowing construction of an image of the ocular structures. This method allows cross-sectional imaging at a resolution of 6 to 25 μm.

The Stratus optical coherence tomography, which uses a 0.8-μm wavelength light source, was designed to evaluate the optic nerve head, retinal nerve fiber layer, and retinal thickness in the posterior segment. The Zeiss Visante optical coherence tomography and anterior chamber Cornea optical coherence tomography use a 1.3-μm wavelength light source designed specifically for imaging the anterior eye segment. Light of this wavelength penetrates the sclera, permitting high-resolution cross-sectional imaging of the anterior chamber angle and ciliary body. The light is, however, typically blocked by pigment, preventing exploration behind the iris. Ultrahigh-resolution optical coherence tomography can achieve a spatial resolution of 1.3 μm, allowing imaging and measurement of corneal layers.

An early application of optical coherence tomography technology was the evaluation of the cornea before and after refractive surgery. Because this noninvasive procedure can be conducted by a technician, it has been proposed that this device may provide a rapid diagnostic and screening tool for detecting angle-closure glaucoma.

Other Diagnostic Tools

Optical coherence tomography of the anterior eye segment is being evaluated as a noninvasive diagnostic and screening tool with a number of potential applications. One proposed use of anterior segment optical coherence tomography is to determine whether there is a narrowing of the anterior chamber angle, which could lead to angle-closure glaucoma. Another general area of potential use is as a presurgical and postsurgical evaluation tool for anterior chamber procedures. This could include assessment of corneal thickness and opacity, calculation of intraocular lens power, guiding surgery, imaging intracorneal ring segments, and assessing complications following surgical procedures such as blockage of glaucoma tubes or detachment of Descemet membrane following endothelial keratoplasty (see evidence review 9.03.22 policy #180). A third general category of use is to image pathologic processes such as dry eye syndrome, tumors, noninfectious uveitis, and infections. It is proposed that anterior segment optical coherence tomography provides better images than slit-lamp biomicroscopy/gonioscopy and ultrasound biomicroscopy due to higher resolution. In addition, anterior segment optical coherence tomography does not require probe placement under topical anesthesia.

Alternative methods of evaluating the anterior chamber are slit-lamp biomicroscopy or ultrasound biomicroscopy. Slit-lamp biomicroscopy is typically used to evaluate the anterior chamber; however, the chamber angle can only be examined with specialized lenses, the most common being the gonioscopic mirror. In this procedure, a gonio lens is applied to the surface of the cornea, which may result in distortion of the globe. Ultrasonography may also be used for imaging the anterior eye segment.¹
Ultrasonography uses high-frequency mechanical pulses (10 to 20 MHz) to build a picture of the front of the eye. An ultrasound scan along the optical axis assesses corneal thickness, anterior chamber depth, lens thickness, and axial length. Ultrasound scanning across the eye creates a 2-dimensional image of the ocular structures. It has a resolution of 100 μm but only moderately high intraobserver and low interobserver reproducibility. Ultrasound biomicroscopy (>50 MHz) has a resolution of 30 to 50 μm. As with slit-lamp biomicroscopy with a gonioscopic mirror, this technique requires placement of a probe under topical anesthesia.

Classification and Assessment of Glaucoma

Glaucoma is characterized by degeneration of the optic nerve.

The classification of glaucoma as open-angle or angle-closure relies on assessment of the anterior segment anatomy, particularly that of the anterior chamber angle. Angle-closure glaucoma is characterized by obstruction of aqueous fluid drainage through the trabecular meshwork (the primary fluid egress site) from the eye’s anterior chamber. The width of the angle is a factor affecting the drainage of aqueous humor. A wide unobstructed iridocorneal angle permits sufficient drainage of aqueous humor, whereas a narrow-angle may impede the drainage system and leave the patient susceptible to an increase in intraocular pressure and angle-closure glaucoma.

A comprehensive ophthalmologic examination for glaucoma includes assessment of the optic nerve and retinal nerve fiber layer (see policy #053 on imaging of the optic nerve with posterior segment optical coherence tomography, evaluation of visual fields, and measurement of ocular pressure). The presence of characteristic changes in the optic nerve or abnormalities in visual field, together with increased intraocular pressure, is sufficient for a definitive diagnosis of glaucoma.

Summary

Optical coherence tomography is a noninvasive, high-resolution imaging method that can be used to visualize ocular structures. Optical coherence tomography of the anterior segment is being evaluated as a noninvasive diagnostic and screening tool for detecting angle-closure glaucoma, for presurgical evaluation, surgical guidance, and for assessing complications following surgical procedures. It is also being studied as a tool to evaluate the pathologic processes of dry eye syndrome, tumors, uveitis, and infections.

For individuals who are being evaluated for angle-closure glaucoma who receive anterior segment optical coherence tomography, the evidence includes a systematic review, case series, and cohort studies. Relevant outcomes are test accuracy, symptoms, change in disease status, and morbid events. Current literature consists primarily of assessments of qualitative and quantitative imaging and detection capabilities. Ideally, a diagnostic test should be evaluated based on its diagnostic accuracy and clinical utility. Studies have shown that anterior segment optical coherence tomography detects more eyes with narrow or closed angles than gonioscopy, suggesting that the sensitivity of optical coherence tomography may be higher than that of gonioscopy. However, because of clinical follow-up and validation studies, it is not clear to what degree these additional cases are true-positives or false-positives and, therefore, the specificity and predictive values cannot be determined. The evaluation of diagnostic performance depends, therefore, on evidence that the additional eyes identified with narrow-angle by anterior segment optical coherence tomography are at higher risk for primary angle-closure glaucoma. Results from a study with mid-term follow-up have shown that some patients identified with angle-closure on anterior segment optical coherence tomography will develop angle-closure on gonioscopy after several years, but that there may also be a large number of false-positive results. Longer-term studies are needed to determine whether eyes classified as closed-angle by anterior segment optical coherence tomography are at higher risk of developing primary angle-closure glaucoma. It is also not known whether early detection of angle-closure will improve outcomes in individuals who do not have symptoms of angle-closure. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who are being evaluated for anterior eye surgery or postsurgical complications who receive anterior segment optical coherence tomography, the evidence includes case series. Relevant
outcomes are test accuracy, symptoms, change in disease status, and morbid events. Use of anterior segment optical coherence tomography has been reported for presurgical evaluation, surgical guidance, and monitoring for postsurgical complications. There is some evidence that the high-resolution images provided by anterior segment optical coherence tomography are superior to results from slit-lamp examination or gonioscopy for some indications. However, current literature is very limited. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have anterior eye segment disease or pathology who receive anterior segment optical coherence tomography, the evidence includes case series. Relevant outcomes are test accuracy, symptoms, change in disease status, and morbid events. The evidence related to the use of anterior segment optical coherence tomography for anterior segment disease or pathology (e.g., dry eye syndrome, tumors, uveitis, infections) is limited, and does not support improvements in imaging compared with alternative diagnostic techniques. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2023</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>4/2022</td>
<td>Annual policy review. Description, summary, and references updated. Policy statements unchanged.</td>
</tr>
<tr>
<td>4/2021</td>
<td>Annual review. Policy statements unchanged.</td>
</tr>
<tr>
<td>1/2021</td>
<td>Medicare information removed. See MP #132 Medicare Advantage Management for local coverage determination and national coverage determination reference.</td>
</tr>
<tr>
<td>6/2017</td>
<td>Clarified coding language.</td>
</tr>
<tr>
<td>4/2016</td>
<td>Annual review. New references added</td>
</tr>
<tr>
<td>8/2015</td>
<td>Added coding language.</td>
</tr>
<tr>
<td>7/2014</td>
<td>Updated Coding section with ICD10 procedure and diagnosis codes. Effective 10/2015.</td>
</tr>
<tr>
<td>5/2014</td>
<td>Annual review. New references added</td>
</tr>
<tr>
<td>4/2014</td>
<td>Coding information clarified.</td>
</tr>
<tr>
<td>2/2014</td>
<td>Coding information clarified.</td>
</tr>
<tr>
<td>12/2010</td>
<td>Updated to remove deleted CPT code 0187T. Effective 1/1/2011.</td>
</tr>
<tr>
<td>3/2009</td>
<td>Updated after annual review policy issued 12/09, without change in coverage exclusion of anterior eye segment optical imaging for commercial products only. References added.</td>
</tr>
<tr>
<td>1/2010</td>
<td>Updated to remove Blue Medicare PFFS PlusRX.</td>
</tr>
<tr>
<td>2/2009</td>
<td>Updated to align coverage of anterior eye segment optical imaging with Local Medicare LCD coverage criteria and to implement editing to support coverage when billed with CPT Category III code 0187T for our Medicare Advantage Products only; editing is effective 12/5/08.</td>
</tr>
</tbody>
</table>
Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use
Managed Care Guidelines
Indemnity/PPO Guidelines
Clinical Exception Process
Medical Technology Assessment Guidelines

References